...
首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Y586F mutation in murine leukemia virus reverse transcriptase decreases fidelity of DNA synthesis in regions associated with adenine-thymine tracts.
【24h】

Y586F mutation in murine leukemia virus reverse transcriptase decreases fidelity of DNA synthesis in regions associated with adenine-thymine tracts.

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

Using in vivo fidelity assays in which bacterial beta-galactosidase or green fluorescent protein genes served as reporters of mutations, we have identified a murine leukemia virus (MLV) RNase H mutant (Y586F) that exhibited an increase in the retroviral mutation rate approximately 5-fold in a single replication cycle. DNA-sequencing analysis indicated that the Y586F mutation increased the frequency of substitution mutations 17-fold within 18 nt of adenine-thymine tracts (AAAA, TTTT, or AATT), which are known to induce DNA bending. Sequence alignments indicate that MLV Y586 is equivalent to HIV-1 Y501, a component of the recently described RNase H primer grip domain, which contacts and positions the DNA primer strand near the RNase H active site. The results suggest that wild-type reverse transcriptase (RT) facilitates a specific conformation of the template-primer duplex at the polymerase active site that is important for accuracy of DNA synthesis; when an adenine-thymine tract is within 18 nt of the polymerase active site, the Y586F mutant RT cannot facilitate this specific template-primer conformation, leading to an increase in the frequency of substitution mutations. These findings indicate that the RNase H primer grip can affect the template-primer conformation at the polymerase active site and that the MLV Y586 residue and template-primer conformation are important determinants of RT fidelity.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号