...
首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Molecular recognition of oxygen by protein mimics: Dynamics on the femtosecond to microsecond time scale.
【24h】

Molecular recognition of oxygen by protein mimics: Dynamics on the femtosecond to microsecond time scale.

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

Molecular recognition by biological macromolecules involves many elementary steps, usually convoluted by diffusion processes. Here we report studies of the dynamics, from the femtosecond to the microsecond time scale, of the different elementary processes involved in the bimolecular recognition of a protein mimic, cobalt picket-fence porphyrin, with varying oxygen concentration at controlled temperatures. Electron transfer, bond breakage, and thermal "on" (recombination) and "off" (dissociation) reactions are the different processes involved. The reaction on-rate is 30 to 60 times smaller than that calculated from standard Smoluchowski theory. Introducing a two-step recognition model, with reversibility being part of both steps, removes the discrepancy and provides consistency for the reported thermodynamics, kinetics, and dynamics. The transient intermediates are configurations defined by the contact between oxygen (diatomic) and the picket-fence porphyrin (macromolecule). This intermediate is critical in the description of the potential energy landscape but, as shown here, both enthalpic and entropic contributions to the free energy are important. In the recognition process, the net entropy decrease is -33 cal mol(-1) K(-1); DeltaH is -13.4 kcal mol(-1).

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号