...
首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Hyperspectral Image Mixed Noise Removal Based on Multidirectional Low-Rank Modeling and Spatial–Spectral Total Variation
【24h】

Hyperspectral Image Mixed Noise Removal Based on Multidirectional Low-Rank Modeling and Spatial–Spectral Total Variation

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

Conventional low-rank (LR)-based hyperspectral image (HSI) denoising models generally convert high-dimensional data into 2-D matrices or just treat this type of data as 3-D tensors. However, these pure LR or tensor low-rank (TLR)-based methods lack flexibility for considering different correlation information from different HSI directions, which leads to the loss of comprehensive structure information and inherent spatial–spectral relationship. To overcome these shortcomings, we propose a novel multidirectional LR modeling and spatial–spectral total variation (MLR-SSTV) model for removing HSI mixed noise. By incorporating the weighted nuclear norm, we obtain the weighted sum of weighted nuclear norm minimization (WSWNNM) and the weighted sum of weighted tensor nuclear norm minimization (WSWTNNM) to estimate the more accurate LR tensor, especially, to remove the dead-line noise better. Gaussian noise is further denoised and the local spatial–spectral smoothness is preserved effectively by SSTV regularization. We develop an efficient algorithm for solving the derived optimization based on the alternating direction method of multipliers (ADMM). Extensive experiments on both synthetic data and real data demonstrate the superior performance of the proposed MLR-SSTV model for HSI mixed noise removal.

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号