...
首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Meiotic recombination frequencies are affected by nutritional states in Saccharomycescerevisiae.
【24h】

Meiotic recombination frequencies are affected by nutritional states in Saccharomycescerevisiae.

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

Meiotic recombination in the yeast Saccharomyces cerevisiae is initiated by programmed double-strand breaks at selected sites throughout the genome (hotspots). alpha-Hotspots are binding sites for transcription factors. Double-strand breaks at alpha-hotspots require binding of transcription factor but not high levels of transcription per se. We show that modulating the production of the transcription factor Gcn4p by deletion or constitutive transcription alters the rate of gene conversion and crossing-over at HIS4. In addition, we show that alterations in the metabolic state of the cell change the frequency of gene conversion at HIS4 in a Gcn4p-dependent manner. We suggest that recombination data obtained from experiments using amino acid and other biosynthetic genes for gene disruptions and/or as genetic markers should be treated cautiously. The demonstration that Gcn4p affects transcription of more than 500 genes and that the recombinationally "hottest" ORFs tend to be Gcn4p-regulated suggest that the metabolic state of a cell, especially with respect to nitrogen metabolism, is a determinant of recombination rates. This observation suggests that the effects of metabolic state may be global and may account for some as yet unexplained features of recombination in higher organisms, such as the differences in map length between the sexes.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号