...
首页> 外文期刊>Environmental Science & Technology: ES&T >Thermal Wet Oxidation Improves Anaerobic Biodegradability of Raw and Digested Biowaste
【24h】

Thermal Wet Oxidation Improves Anaerobic Biodegradability of Raw and Digested Biowaste

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

Anaerobic digestion of solid biowaste generally results in relatively low methane yields of 50-60 of the theoretical maximum.Increased methane recovery from organic waste would lead to reduced handling of digested solids,lower methane emissions to the environment,and higher green energy profits.The objective of this research was to enhance the anaerobic biodegradability and methane yields from different biowastes(food waste,yard waste,and digested biowaste already treated in a full-scale biogas plant(DRANCO,Belgium))by assessing thermal wet oxidation.The biodegradability of the waste was evaluated by using biochemical methane potential assays and continuous 3-L methane reactors.Wet oxidation temperature and oxygen pressure(T,185-220 deg C;O_2 pressure,0-12 bar;t,15 min)were varied for their effect on total methane yield and digestion kinetics of digested biowaste.Measured methane yields for raw yard waste,wet oxidized yard waste,raw food waste,and wet oxidized food waste were 345,685,536,and 571 ml of CH_4/g of volatile suspended solids,respectively.Higher oxygen pressure during wet oxidation of digested biowaste considerably increased the total methane yield and digestion kinetics and permitted lignin utilization during a subsequent second digestion.The increase of the specific methane yield for the full-scale biogas plant by applying thermal wet oxidation was 35-40,showing that there is still a considerable amount of methane that can be harvested from anaerobic digested biowaste.

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号