...
首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase
【24h】

Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

Calcium oscillations suppress mitochondrial movements along the microtubules to support on-demand distribution of mitochondria. To activate this mechanism, Ca2+ targets a yet unidentified cytoplasmic factor that does not seem to be a microtubular motor or a kinase/phosphatase. Here, we have studied the dependence of mitochondrial dynamics on the Miro GTPases that reside in the mitochondria and contain two EF-hand Ca2+-binding domains, in H9c2 cells and primary neurons. At resting cytoplasmic Ca2+(Ca2+(c)), movements of the mitochondria were enhanced by Miro overexpression irrespective of the presence of the EF-hands. The Ca2+-induced arrest of mitochondrial motility was also promoted by Miro overexpression and was suppressed when either the Miro were depleted or their EF-hand was mutated. Miro also enhanced the fusion state of the mitochondria at resting Ca2+ c but promoted mitochondrial fragmentation at high Ca2+ c. These effects of Miro on mitochondrial morphology seem to involve Drp1 suppression and activation, respectively. In primary neurons, Miro also caused an increase in dendritic mitochondrial mass and enhanced mitochondrial calcium signaling. Thus, Miro proteins serve as a Ca2+(c)- sensitive switch and bifunctional regulator for both the motility and fusion-fission dynamics of the mitochondria.

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号