...
首页> 外文期刊>Machine Learning and Knowledge Extraction >Missing Data Estimation in Temporal Multilayer Position-Aware Graph Neural Network (TMP-GNN)
【24h】

Missing Data Estimation in Temporal Multilayer Position-Aware Graph Neural Network (TMP-GNN)

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

GNNs have been proven to perform highly effectively in various node-level, edge-level, and graph-level prediction tasks in several domains. Existing approaches mainly focus on static graphs. However, many graphs change over time and their edge may disappear, or the node/edge attribute may alter from one time to the other. It is essential to consider such evolution in the representation learning of nodes in time-varying graphs. In this paper, we propose a Temporal Multilayer Position-Aware Graph Neural Network (TMP-GNN), a node embedding approach for dynamic graphs that incorporates the interdependence of temporal relations into embedding computation. We evaluate the performance of TMP-GNN on two different representations of temporal multilayered graphs. The performance is assessed against the most popular GNNs on a node-level prediction task. Then, we incorporate TMP-GNN into a deep learning framework to estimate missing data and compare the performance with their corresponding competent GNNs from our former experiment, and a baseline method. Experimental results on four real-world datasets yield up to 58 lower ROC AUC for the pair-wise node classification task, and 96 lower MAE in missing feature estimation, particularly for graphs with a relatively high number of nodes and lower mean degree of connectivity.

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号