...
首页> 外文期刊>Molecular cell >Rewiring Mitochondrial Pyruvate Metabolism: Switching Off the Light in Cancer Cells?
【24h】

Rewiring Mitochondrial Pyruvate Metabolism: Switching Off the Light in Cancer Cells?

机译:重新布线线粒体丙酮酸代谢:关掉癌细胞的光?

获取原文
获取原文并翻译 | 示例
           

摘要

Dysregulated metabolism, an emerging hallmark of cancer, provides tumor cells with sufficient energy to maintain critical cellular processes including proliferation and lipid biosynthesis (Metallo and Van-der Heiden, 2013). Critical metabolic pathways utilized by cancer cells rely predominantly on glucose and glutamine as primary nutrient sources. In contrast to aerobic glycolysis (often referred to as the "Warburg effect") where lactate is produced at the expense of pyruvate oxidation in the tricarboxylic acid (TCA) cycle, many tumor cells metabolize glutamine to either maintain TCA cycle function or to generate acetyl-CoA for lipid biosynthesis through reductive carboxylation. Aside from energy production, TCA cycle intermediates are utilized as substrates for biosynthetic (cataplerotic) reactions and therefore need to be replenished (anaplerosis) in order to coordinate respiration (Metallo and Vander Heiden, 2013). Importantly, through oxaloacetate (OAA) generation, pyruvate interconnects carbohydrate, lipid/fatty acid, and amino acid metabolism, thus providing an attractive target for" metabolic and synthetic lethality screens in cancer cells. Recent studies revealed that the mitochondrial pyruvate carriers (MPC1 and MPC2) form a heterocomplex embedded in the inner mitochondrial membrane (Bricker et al., 2012; Herzig et al., 2012). In this issue of Molecular Cell, Schell and colleagues identified MPC1 loss as a common feature of cancer cells, an observation corroborated by epidemio-logical data demonstrating a correlation between low MPC1 expression and poor survival (Schell et al., 2014) (Figure 1). Re-expression of MPCs in colon cancer cells lacking native MPCs increased pyruvate flux into the mitochondria for oxidation via the TCA cycle, though in adherent cell culture did not have any significant effects on proliferation, viability, apoptosis, or necrosis. However, MPC re-expression under conditions of anchorage-independent growth inhibited the growth of colon cancer cells in vitro and in vivo. Interestingly, the authors observed the anti-proliferative phenotype associated with restoration of MPC function to be most prominent in the stem cell compartment (Schell et al., 2014). Although the effect of MPC expression on sternness is clearly metabolic, further studies to elucidate the mechanism(s) underlying the loss of stem cell markers will potentially identify crucial frailties in cancer cells that can be exploited therapeutically.
机译:代谢失调是癌症的一个新兴特征,它为肿瘤细胞提供足够的能量,以维持关键的细胞过程,包括增殖和脂质生物合成(Metallo和Van-der Heiden,2013)。癌细胞利用的关键代谢途径主要依赖葡萄糖和谷氨酰胺作为主要营养来源。与有氧糖酵解(通常称为“ Warburg效应”)不同,后者以三羧酸(TCA)循环中的丙酮酸氧化为代价产生乳酸,许多肿瘤细胞代谢谷氨酰胺以维持TCA循环功能或产生乙酰基-CoA通过还原羧化进行脂质生物合成。除了产生能量外,TCA循环中间体还用作生物合成(僵化)反应的底物,因此需要补充(僵化)以协调呼吸作用(Metallo和Vander Heiden,2013)。重要的是,通过草酰乙酸(OAA)的产生,丙酮酸将碳水化合物,脂质/脂肪酸和氨基酸代谢相互连接,从而为癌细胞的代谢和合成致死性筛选提供了有吸引力的靶标。最近的研究表明,线粒体丙酮酸载体(MPC1和MPC2)形成嵌入线粒体内膜的异源复合物(Bricker等人,2012; Herzig等人,2012),在此期《分子细胞》中,Schell等人将MPC1缺失鉴定为癌细胞的常见特征。流行病学数据证实了MPC1低表达与不良生存之间的相关性(Schell等人,2014)(图1)在缺乏天然MPC的结肠癌细胞中MPCs的重新表达增加了丙酮酸向线粒体的通量,以通过氧化作用进行氧化尽管在贴壁细胞培养中,TCA周期对增殖,生存力,细胞凋亡或坏死没有任何显着影响,但是在协同作用下MPC的重新表达锚定非依赖性生长的抑制作用在体外和体内均抑制结肠癌细胞的生长。有趣的是,作者观察到与MPC功能恢复相关的抗增殖表型在干细胞区室中最为突出(Schell等人,2014)。尽管MPC表达对严厉性的影响显然是新陈代谢的,但进一步研究以阐明干细胞标志物丧失的潜在机制将有可能鉴定出可用于治疗的癌细胞中的关键脆弱因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号