...
首页> 外文期刊>Theoretical and Computational Fluid Dynamics >Inverted stochastic lattice Boltzmann-Lagrangian model for identifying indoor particulate pollutant sources
【24h】

Inverted stochastic lattice Boltzmann-Lagrangian model for identifying indoor particulate pollutant sources

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract This paper studies the inverted stochastic lattice Boltzmann-Lagrangian approach for identifying indoor particulate pollutant sources. The dynamics of the fluid (indoor air) as well as the transport of the particles in the Eulerian description are solved using the lattice Boltzmann method. The particles regard as rigid bodies, and the data interactions between lattice fluid and particle movement are implemented by calculating for interaction force and void fraction. Particle-wall collision process is based on the softball model which describes the dynamic characteristics of particles in microscopic state. The results are shown that the particle forward and inverted drifting paths and its mechanisms are investigated clearly than previous methods. Indoor particulate pollutant sources can exactly identify with this approach. This research can offer theoretical relevance to the modeling of multi-phase particle fluid.Graphical abstract

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号