首页> 外文期刊>Nanotechnology >Nanoparticle engineering and control of tin oxide microstructures for chemical microsensor applications
【24h】

Nanoparticle engineering and control of tin oxide microstructures for chemical microsensor applications

机译:用于化学微传感器应用的纳米粒子工程和氧化锡微结构的控制

获取原文
获取原文并翻译 | 示例
           

摘要

The use of metal nanoparticles as seed layers for controlling the microstructures of tin oxide (SnO_2) films on temperature controllable micromachined platforms has been investigated. The study is focused on SnO_2 due to its importance in the field of chemical microsensors. Nanoparticle seeds of iron, cobalt, nickel, copper and silver were formed by vapour deposition on the microhotplates followed by annealing at 500 deg C prior to self-aligned SnO_2 deposition. Significant control of SnO_2 grain sizes, ranging between 20 and 121 nm, was achieved depending on the seed-layer type. A correlation was found between decreasing the SnO_2 grain size and increasing the melting temperature of the seed-layer metals, suggesting the use of high temperature metals as being appropriate choices as seed layers for obtaining a smaller SnO_2 grain structure. Smaller grain diameters resulted in high sensitivity in 90 ppm ethanol illustrating the benefits of nanoparticle seeding for chemical sensing. The initial morphology, particle size and distribution of the seed layers was found to dictate the final SnO_2 morphology and grain size. This paper not only demonstrates the possibility of depositing nanostructured oxide materials for chemical microsensor applications, but also demonstrates the feasibility of conducting combinatorial research into nanoparticle growth using temperature controllable microhotplate platforms. This paper also demonstrates the possibility of using multi-element arrays to form a range of different types of devices that could be used with suitable olfactory signal processing techniques in order to identify a variety of gases.
机译:已经研究了使用金属纳米颗粒作为种子层来控制温度可控的微加工平台上的氧化锡(SnO_2)薄膜的微观结构。由于SnO_2在化学微传感器领域的重要性,因此研究集中在SnO_2上。铁,钴,镍,铜和银的纳米粒子种子是通过在微热板上汽相沉积,然后在自对准SnO_2沉积之前在500摄氏度下退火而形成的。根据种子层的类型,可以实现对SnO_2晶粒大小的重要控制,范围在20到121 nm之间。发现在减小SnO_2晶粒尺寸和提高种子层金属的熔化温度之间存在相关性,这表明使用高温金属作为获得较小SnO_2晶粒结构的种子层的合适选择。较小的粒径导致在90 ppm的乙醇中具有较高的灵敏度,说明了纳米粒子接种对化学传感的好处。发现种子层的初始形态,粒度和分布决定了最终的SnO_2形态和晶粒尺寸。本文不仅演示了沉积用于化学微传感器应用的纳米结构氧化物材料的可能性,而且演示了使用可控温度的微热板平台对纳米颗粒生长进行组合研究的可行性。本文还演示了使用多元素阵列形成一系列不同类型的设备的可能性,这些设备可以与合适的嗅觉信号处理技术一起使用,以识别各种气体。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号