首页> 外文期刊>Nanotechnology >Dealing with imperfection: quantifying potential length scale artefacts from nominally spherical indenter probes
【24h】

Dealing with imperfection: quantifying potential length scale artefacts from nominally spherical indenter probes

机译:处理瑕疵:从标称球形压头探针量化潜在的长度刻度伪像

获取原文
获取原文并翻译 | 示例
           

摘要

Instrumented nanoindenters are commonly employed to extract elastic, plastic or time-dependent mechanical properties of the indented material surface. In several important cases, accurate determination of the indenter probe radii is essential for the proper analytical interpretation of the experimental response, and it cannot be circumvented by an experimentally determined expression for the contact area as a function of depth. Current approaches quantify the indenter probe radii via inference from a series of indents on a material with known elastic modulus (e.g., fused quartz) or through the fitting of two-dimensional projected images acquired via atomic force microscopy (AFM) or scanning electron microscopy (SEM) images. Here, we propose a more robust methodology, based on concepts of differential geometry, for the accurate determination of three-dimensional indenter probe geometry. The methodology is presented and demonstrated for four conospherical indenters with probe radii of the order of 1-10 mu m. The deviation of extracted radii with manufacturer specifications is emphasized and the limits of spherical approximations are presented. All four probes deviate from the assumed spherical geometry, such that the effective radii are not independent of distance from the probe apex. Significant errors in interpretation of material behaviour will result if this deviation is unaccounted for during the analysis of indentation load-depth responses obtained from material surfaces of interest, including observation of an artificial length scale that could be misinterpreted as an effect attributable to material length scales less than tens of nanometres in size or extent.
机译:仪器化的纳米压头通常用于提取压痕材料表面的弹性,塑性或时间相关的机械性能。在一些重要的情况下,正确确定压头探针半径对于正确分析实验响应至关重要,并且不能通过实验确定的接触面积随深度的表达式来规避。当前的方法是通过从已知弹性模量的材料(例如熔融石英)上的一系列凹痕推断出的压痕半径或通过原子力显微镜(AFM)或扫描电子显微镜获得的二维投影图像的拟合来量化压头探针半径( SEM)图片。在这里,我们基于微分几何的概念提出了一种更可靠的方法,用于精确确定三维压头探针的几何形状。提出并证明了该方法适用于四个半径为1-10微米的对流层压头。强调了提取半径与制造商规范的偏差,并提出了球面近似的极限。所有四个探针均偏离假定的球形几何形状,因此有效半径并不独立于与探针顶点的距离。如果在分析从感兴趣的材料表面获得的压痕载荷-深度响应期间未解决此偏差,则将导致材料行为解释的重大错误,包括观察可能被误解为材料长度等级的影响的人工长度等级尺寸或范围小于几十纳米。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号