...
首页> 外文期刊>Big Data and Cognitive Computing >YOLO-v5 Variant Selection Algorithm Coupled with Representative Augmentations for Modelling Production-Based Variance in Automated Lightweight Pallet Racking Inspection
【24h】

YOLO-v5 Variant Selection Algorithm Coupled with Representative Augmentations for Modelling Production-Based Variance in Automated Lightweight Pallet Racking Inspection

机译:

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The aim of this research is to develop an automated pallet inspection architecture with two key objectives: high performance with respect to defect classification and computational efficacy, i.e., lightweight footprint. As automated pallet racking via machine vision is a developing field, the procurement of racking datasets can be a difficult task. Therefore, the first contribution of this study was the proposal of several tailored augmentations that were generated based on modelling production floor conditions/variances within warehouses. Secondly, the variant selection algorithm was proposed, starting with extreme-end analysis and providing a protocol for selecting the optimal architecture with respect to accuracy and computational efficiency. The proposed YOLO-v5n architecture generated the highest MAP@0.5 of 96.8 compared to previous works in the racking domain, with a computational footprint in terms of the number of parameters at its lowest, i.e., 1.9 M compared to YOLO-v5x at 86.7 M.

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号