...
首页> 外文期刊>Theoretical and Computational Fluid Dynamics >Excitation of unsteady Gortler vortices by localized surface nonuniformities
【24h】

Excitation of unsteady Gortler vortices by localized surface nonuniformities

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

A combined theoretical and numerical analysis of an experiment devoted to the excitation of Gortler vortices by localized stationary or vibrating surface nonuniformities in a boundary layer over a concave surface is performed. A numerical model of generation of small-amplitude disturbances and their downstream propagation based on parabolic equations is developed. In the framework of this model, the optimal and the modal parts of excited disturbance are defined as solutions of initial-value problems with initial values being, respectively, the optimal disturbance and the leading local mode at the location of the source. It is shown that a representation of excited disturbance as a sum of the optimal part and a remainder makes it possible to describe its generation and downstream propagation, as well as to predict satisfactorily the corresponding receptivity coefficient. In contrast, the representation based on the modal part provides only coarse information about excitation and propagation of disturbance in the range of parameters under investigation. However, it is found that the receptivity coefficients estimated using the modal parts can be reinterpreted to preserve their practical significance. A corresponding procedure was developed. The theoretical and experimental receptivity coefficients are estimated and compared. It is found that the receptivity magnitudes grow significantly with the disturbance frequency. Variation of the span-wise scale of the nonuniformities affects weakly the receptivity characteristics at zero frequency. However, at high frequencies, the efficiency of excitation of Gortler vortices depends substantially on the span-wise scale.

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号