首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >Electronic Structure, Photophysics, and Relaxation Dynamics of Charge Transfer Excited States in Boron-Nitrogen-Bridged Ferrocene-Donor Organic-Acceptor Compounds
【24h】

Electronic Structure, Photophysics, and Relaxation Dynamics of Charge Transfer Excited States in Boron-Nitrogen-Bridged Ferrocene-Donor Organic-Acceptor Compounds

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

We present a study of the electronic, photophysical, and picosecond excited-state relaxation characteristics of a class of derivatives comprised of multiple bipyridylboronium acceptors covalently linked to a ferrocene donor. These compounds exhibit a broad visible absorption band, which we attribute to a metal-to-ligand charge transfer transition between the donor and the acceptor. A comparison of optical absorption, spectroelectrochemical, and theoretical results confirms the assignment of the band and provides information on the degree of electron delocalization between the donor and the acceptor. Picosecond transient absorption measurements reveal that the back-electron transfer relaxation is critically dependent on the structural flexibility of the bridging bonds between the donor and the acceptor. In the case where the acceptor substituents are free to rotate about the bridging bonds between the boron and the cyclopentadienyl rings of the ferrocene, a significant portion of the excited state decays directly back to the ground state on a time scale of ~18 ps, whereas in the case where an additional ansa-bridge that connects acceptor substituents enforces a more rigid conformation, the ground-state recovery proceeds only on a ~800-ps time scale. This demonstrates the importance of conformational degrees of freedom for the internal conversion and back-electron transfer in these systems.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号