首页> 外军国防科技报告 >Experimental study of high-pressure fluidized bed gasification of biomass at pilot scale: A proof of concept
【2h】

Experimental study of high-pressure fluidized bed gasification of biomass at pilot scale: A proof of concept

机译:中试规模生物质高压流化床气化实验研究:概念验证

代理获取
代理获取并翻译 | 示例

摘要

Climate change is real. Rising world population and increasing energy demands are taking a toll on the planet. Moving towards a greener, cooler and sustainable future, there is a need for cleaner, efficient, and reliable sources of energy, and biomass is one of them. This thesis work performed at KTH Royal Institute of Technology attempts to contribute to this pressing need. High-pressure biomass gasification technology is an important process intensification step. However, it is not well investigated yet. This work attempts to understand the performance and pave the pathway for future studies.

Experiments were performed using olivine, magnesite, and silica sand as bed material. Grot and birch were tested as fuel. The experiments were carried out in a 75 KWfuel bubbling fluidized bed gasifier at 20 bar, using Steam/Oxygen as a gasifying agent. Produced gas composition, tar production, and carbon conversion efficiency were examined. Olivine and magnesite showed good resistance against attrition and agglomeration. Stable bed temperature with no signs of defluidization or sintering were observed during the experiments. Silica sand cannot be used as a bed material with grot due to its high ash content. However, mild agglomeration was also observed with the birch feedstock. Carbon dioxide in the produced gas increased with increase in pressure, whereas, carbon monoxide decreased with increase in pressure. Olivine showed excellent reduction properties for tars lighter than naphthalene, whereas, magnesite performed best for overall tar reduction for grot. It was observed that fuel feeding is a big challenge for running operation at high pressure.

These tests at 20 bar were an intermediate step to validate BFB biomass gasification at 40 bar. It would be interesting to study the changes in gas composition, tar, and char formation to evaluate the performance related to carbon conversion efficiency, produced gas composition, and tar production for different bed material at 40 bar.

著录项

  • 作者

    Agarwal, Ayush;

  • 作者单位
  • 年(卷),期 2020(),
  • 年度 2020
  • 页码
  • 总页数 48
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 网站名称 在线学术档案数据库
  • 栏目名称 所有文件
  • 关键词

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号