首页> 美国政府科技报告 >Real-World Validation of Three Tipover Algorithms for Mobile Robots
【24h】

Real-World Validation of Three Tipover Algorithms for Mobile Robots

机译:移动机器人三种Tipover算法的实际验证

获取原文

摘要

Mobile robot tipover is a concern as it can create dangerous situations for operators and bystanders, cause collateral damage to the surrounding environment, and result in an aborted mission. Algorithms have been developed by others to assess the stability of the robot, and many of these algorithms have been demonstrated using simulated data. In order to verify that these algorithms accurately match real-world behavior we have collected data of a mobile robot tipping over and then compared this data to the stability measures provided by three algorithms: Zero-Moment Point (ZMP), Force-Angle stability measure (FA), and Moment-Height Stability measure (MHS). A small mobile robot platform based on the iRobot PackBot drove a course including ramps and obstacles; an IMU and GPS provided inertial and positional data for the algorithms, and the actual tipover event is determined from video footage of the tests. The average normalized measure at tipover event initiation was found to be 0.665 for ZMP, -0.094 for FA, and 0.023 for MHS, where a value of 1 corresponds to resting stability. Standard deviations were 0.38, 0.84, and 0.67, respectively. The measures show a significant amount of noise, which is likely due to the vibrations caused by movement of the tracks and could be reduced by employing additional filtering during data collection. The preliminary real- world data validates these tipover algorithms as able to assess robot stability, and they can be used as part of a tipover avoidance system.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号