首页> 美国政府科技报告 >Contact Resistance Evolution and Degradation of Highly Cycled
【24h】

Contact Resistance Evolution and Degradation of Highly Cycled

机译:接触电阻的演变与高周期的退化

获取原文

摘要

Reliable microelectromechanical systems (MEMS) switches are critical for developing high performance radio frequency circuits like phase shifters. Engineers have attempted to improve reliability and lifecycle performance using novel contact metals, unique mechanical designs and packaging. Various test fixtures including: MEMS devices, atomic force microscopes (AFM) and nanoindentors have been used to collect resistance and contact force data. AFM and nanoindentor test fixtures allow direct contact force measurements but are severely limited by low resonance sensors, and therefore low data collection rates. This thesis reports the contact resistance evolution results and fabrication of thin film micro-contacts dynamically tested up to 3kHz. The contacts consisted of a lower contact of evaporated Au and a thin film upper contact, consisting of sputtered Au, Ru or RuO2, with an Au electroplated structural layer. The fixed-fixed beam was designed with sufficient restoring force to overcome adhesion. The hemisphere-upper and planar-lower contacts are mated with a calibrated, external load resulting in approximately 200muN of contact force and are cycled in excess of 10 to the 7th power times or until failure. In addition, Au-Au contact pairs with a hemispherical upper an engineered lower contact were tested. These lower engineered contacts were constructed using gray-scale lithography. Contact resistance was measured, insitu, using Holm's a cross-bar configuration and the entire apparatus was isolated from external vibration and housed in an enclosure to minimize contamination due to the ambient environment. Additionally, contact cycling and data collection are automated using a computer, integrated lab equipment and LabVIEW. Results include contact resistance measurements of Au, Ru and RuO2 samples and lifetime testing up to 323.6 million cycles.

著录项

  • 作者

    Stilson, CL;

  • 作者单位
  • 年度 2014
  • 页码 1-252
  • 总页数 252
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工业技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号