首页> 美国政府科技报告 >Optimization of Automatic Target Recognition with a Reject Option Using Fusion and Correlated Sensor Data
【24h】

Optimization of Automatic Target Recognition with a Reject Option Using Fusion and Correlated Sensor Data

机译:基于融合相关传感器数据的拒绝选项自动目标识别优化

获取原文

摘要

This dissertation examines the optimization of automatic target recognition (ATR) systems when a rejection option is included. First, a comprehensive review of the literature inclusive of ATR assessment, fusion, correlated sensor data, and classifier rejection is presented. An optimization framework for the fusion of multiple sensors is then developed. This framework identifies preferred fusion rules and sensors along with rejection and receiver operating characteristic (ROC) curve thresholds without the use of explicit misclassification costs as required by a Bayes' loss function. This optimization framework is the first to integrate both 'vertical' warfighter output label analysis and 'horizontal' engineering confusion matrix analysis. In addition, optimization is performed for the true positive rate, which incorporates the time required by classification systems. The mathematical programming framework is used to assess different fusion methods and to characterize correlation effects both within and across sensors. A synthetic classifier fusion-testing environment is developed by controlling the correlation levels of generated multivariate Gaussian data. This synthetic environment is used to demonstrate the utility of the optimization framework and to assess the performance of fusion algorithms as correlation varies. The mathematical programming framework is then applied to collected radar data. This radar fusion experiment optimizes Boolean and neural network fusion rules across four levels of sensor correlation. Comparisons are presented for the maximum true positive rate and the percentage of feasible thresholds to assess system robustness. Empirical evidence suggests ATR performance may improve by reducing the correlation within and across polarimetric radar sensors. Sensitivity analysis shows ATR performance is affected by the number of forced looks, prior probabilities, the maximum allowable rejection level, and the acceptable error rates.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号