首页> 美国政府科技报告 >Quantifying Initial Condition and Parametric Uncertainties in a Nonlinear Aeroelastic System With an Efficient Stochastic Algorithm
【24h】

Quantifying Initial Condition and Parametric Uncertainties in a Nonlinear Aeroelastic System With an Efficient Stochastic Algorithm

机译:用有效随机算法量化非线性气弹系统的初始条件和参数不确定性

获取原文

摘要

There is a growing interest in understanding how uncertainties in flight conditions and structural parameters affect the character of a limit cycle oscillation (LCO) response, leading to failure of an aeroelastic system. Uncertainty quantification of a stochastic system (parametric uncertainty) with stochastic inputs (initial condition uncertainty) has traditionally been analyzed with Monte Carlo simulations (MCS). Probability density functions (PDF) of the LCO response are obtained from the MCS to estimate the probability of failure. A candidate approach to efficiently estimate the PDF of an LCO response is the stochastic projection method. The objective of this research is to extend the stochastic projection method to include the construction of B-spline surfaces in the stochastic domain. The multivariate B-spline problem is solved to estimate the LCO response surface. An MCS is performed on this response surface to estimate the PDF of the LCO response. The probability of failure is then computed from the PDF. This method is applied to the problem of estimating the PDF of a subcritical LCO response of a nonlinear airfoil in inviscid transonic flow. The stochastic algorithm provides a conservative estimate of the probability of failure of this aeroelastic system two orders of magnitude more efficiently than performing an MCS on the governing equations.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号