首页> 美国政府科技报告 >Characterization of Gaseous Effluents in the LWIR From Both Modeling and Hyperspectral Measurements
【24h】

Characterization of Gaseous Effluents in the LWIR From Both Modeling and Hyperspectral Measurements

机译:从建模和高光谱测量中表征LWIR中的气体流出物

获取原文

摘要

Longwave Infrared (LWIR) radiation comprising atmospheric and surface emissions provides information for a number of applications including atmospheric profiling, surface temperature and emissivity estimation, and cloud depiction and characterization. The LWIR spectrum also contains absorption lines for numerous molecular species which can be utilized in quantifying species amounts. Modeling the absorption and emission from gaseous species using various radiative transfer codes such as MODTRAN-4(1) and FASE(2) (a follow-on to the line-by-line radiative transfer code FASCODE(3)) provides insight into the radiative signature of these elements as viewed from an airborne or space-borne platform and provides a basis for analysis of LWIR hyperspectral measurements. In this study, a model platform was developed for the investigation of the passive outgoing radiance from a scene containing an effluent plume layer. The effects of various scene and model parameters including ambient and plume temperatures, plume concentration, as well as the surface temperature and emissivity on the outgoing radiance were estimated. A simple formula relating the various components of the outgoing radiance was used to study the scale of the component contributions. A number of examples were given depicting the spectral radiance from plumes composed of single or multiple effluent gases as would be observed by typical airborne sensors. The issue of detectability and spectral identification was also discussed.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号