首页> 美国政府科技报告 >Technical viability of alternative blowing agents in polyisocyanurate roof insulation. Part 4, In-situ thermal aging and performance in different roof systems: (Progress report)
【24h】

Technical viability of alternative blowing agents in polyisocyanurate roof insulation. Part 4, In-situ thermal aging and performance in different roof systems: (Progress report)

机译:聚异氰脲酸酯屋顶保温中替代发泡剂的技术可行性。第4部分,不同屋顶系统的原位热老化和性能:(进展报告)

获取原文

摘要

This paper presents a progress report on field thermal performance measurements on a set of private industry-produced, experimental polyisocyanurate laminate board stock foams blown with CFC-11, HCFC-123, HCFC-141b, 50/50, and 65/35 blends of HCFC-123/HCFC-141b. These boards have been observed for almost 300 days of roof field exposure in East Tennessee. The field data are used to derive an empirical model which can be used to predict effective diffusion coefficients for the air components into the foam cells. These diffusion coefficients are compared with those developed from steady state laboratory measurements of thin sliced samples from the same batch of experimental boards. The relative performance of test specimens of HCFC-141b under a black and under a white membrane are reported. The aging of the HCFC-141b blown foam under the white membrane occurred more slowly during cold weather, but accelerated after the winter season, resulting in no significant resistivity difference after 280 days of exposure from September 1989 until May 1990. The field data analysis suggests that the percent increase in k over that of the foam blown with CFC-11 is, after one year of aging, 5.5% for HCFC-123 and 11.7% for HCFC-141b. This leads to the same ordering as derived from the laboratory thin-slicing analysis report in Part 3 of this session. Additional plans are described for further thermal and mechanical property measurements to be conducted on two ORNL roof field testers. After the first year of this three-year study, there has been no indication that thermal performance differences are serious enough to suggest that any or all of the HCFC alternate blowing agents would not be technically viable in polyisocyanurate roof insulations. 5 refs., 19 figs.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号