首页> 美国政府科技报告 >Mathematical modeling and economic analysis of membrane separation of hydrogen from gasifier synthesis gas. Mathematical modeling topical report
【24h】

Mathematical modeling and economic analysis of membrane separation of hydrogen from gasifier synthesis gas. Mathematical modeling topical report

机译:气化炉合成气中氢气膜分离的数学模型与经济分析。数学建模专题报告

获取原文

摘要

Investigators are studying hydrogen purification by membrane technology as a means to make the coal-to-hydrogen route economically attractive. To allow prediction of membrane performance and to facilitate comparisons between membrane and other technologies (cryogenic distillation, pressure swing adsorption), they developed a mathematical model to describe the permeation process inside a membrane module. The results of this model were compared with available experimental data (separation of CO(sub 2)/O(sub 2)/N(sub 2) mixtures). The model was first used to calculate the gas permeabilities from one set of mixed-gas experiments; the resulting permeabilities were then used to predict the results of the other mixed-gas experiments. The agreement between these predictions and the experimental data was good. However, model predictions using gas permeabilities obtained in pure gas experiments did not agree with the mixed gas experimental data. This disagreement is believed to be due to plasticization of the membrane by contact with CO(sub 2). These results indicate that data obtained from experiments with mixed-gas feeds are necessary to adequately predict membrane performance when CO(sub 2) is present. The performance of different system configurations, including one and two stages of membrane modules, was examined. The different configurations examined were single module (SM), single module with recycle (SMR), series (SER), and two stage cascade with interstage compression (CAS). In general, SM is the most economical configuration for producing low purity products, SER for medium purity products, and CAS for high purity products. 7 refs., 12 figs., 8 tabs.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号