首页> 美国政府科技报告 >The Aqueous Thermodynamics and Complexation Reactions of Anionic Silica Species to High Concentration: Effects on Neutralization of Leaked Tank Wastes and Migration of Radionuclides in the Subsurface
【24h】

The Aqueous Thermodynamics and Complexation Reactions of Anionic Silica Species to High Concentration: Effects on Neutralization of Leaked Tank Wastes and Migration of Radionuclides in the Subsurface

机译:阴离子二氧化硅高浓度的水热力学和络合反应:对地下泄漏物中和及地下放射性核素迁移的影响

获取原文

摘要

Highly basic tank wastes contain several important radionuclides, including {sup 90}Sr, {sup 99}Tc, and {sup 60}Co, as well as actinide elements (i.e., isotopes of U, Pu, and Am). These highly basic tank wastes are known to have leaked into the vadose zone at the Hanford Site. Upon entering the sediments in the vadose zone, the highly basic solutions dissolve large concentrations of silica from the silica and aluminosilicate minerals present in the subsurface. These dissolution reactions alter the chemical composition of the leaking solutions, transforming them from a highly basic (as high as 2M NaOH) solution into a pore solution with a very high concentration of dissolved silica and a significantly reduced pH. This moderately basic (pH 9 to 11), high-silica solution has the potential to complex radionuclides and move through the subsurface. Such strong radionuclide complexation is a currently unconsidered transport vector that has the potential to expedite radionuclide transport through the vadose zone. These strong complexation effects have the ability to significantly alter current conceptual models of contaminant migration beneath leaking tanks. In this project, we are determining the aqueous thermodynamics and speciation of dissolved silica and silica-radionuclide complexes to high silica concentration using a combination of (1) studies of chemical species structure and composition [via nuclear magnetic resonance (NMR) and, where applicable, laser-induced fluorescence spectroscopy and x-ray absorption spectroscopy] (2) molecular simulations to help identify key species structures and assist in interpreting experimental measurements (3) fundamental physical chemistry measurements, including solubility, electromotive force, and isopiestic measurements, to obtain the necessary thermodynamic data for predicting contaminant complexation and waste neutralization reactions. The radioactive elements we are studying include Sr, Co, Cs, Am(III), and U(VI).

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号