首页> 美国政府科技报告 >Non-Linear and Linear Model Based Controller Design for Variable-Speed Wind Turbines
【24h】

Non-Linear and Linear Model Based Controller Design for Variable-Speed Wind Turbines

机译:基于非线性和线性模型的变速风力发电机组控制器设计

获取原文

摘要

Variable-speed, horizontal axis wind turbines use blade-pitch control to meet specified objectives for three regions of operation. This paper focuses on controller design for the constant power production regime. A simple, rigid, non-linear turbine model was used to systematically perform trade-off studies between two performance metrics. Minimization of both the deviation of the rotor speed from the desired speed and the motion of the actuator is obtained through systematic selection of proportional-integral-derivative controller gain values. The gain design is performed using a non-linear turbine model and two linear models. The linear models differ only in selection of linearization point. The gain combinations resulting from design based upon each of the three models are similar. Performance under each of the three gain combinations is acceptable according to the metrics selected. The importance of operating point selection for linear models is illustrated. Because the simulation runs efficiently, the non-linear model provides the best gain design, but careful selection of the linearization point can produce acceptable gain designs from linear models.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号