首页> 美国政府科技报告 >Effect of composition and processing on the thermal fatigue and toughness of high performance die steels. Final report
【24h】

Effect of composition and processing on the thermal fatigue and toughness of high performance die steels. Final report

机译:成分和加工对高性能模具钢热疲劳和韧性的影响。总结报告

获取原文

摘要

The objective of this study was to improve average die life by optimizing die steel composition and the die processing. Four different steels, K,Q,C and Premium Grade H-13 have been investigated for thermal fatigue resistance and toughness. Optimum heat treatment processing has been determined for each steel with respect to austenitizing temperature and tempering conditions. The effect of the quenching rate on the thermal fatigue resistance and toughness of the die steels and the effect of Electro-Discharge Machining (EDM) on the thermal fatigue resistance were also determined. The immersion thermal fatigue specimen developed at CWRU was used to determine the thermal fatigue resistance as characterized by the two parameters of average maximum crack length and total crack area. The Charpy V-notch impact test was used over a -100(degrees)F to 450(degrees)F testing temperature range to evaluate the toughness and the brittle-ductile transition behavior. K steel has been identified as superior in performance compared to Premium Grade H-13. Q and C provide lower toughness and thermal fatigue resistance than H-13. Faster cooling rates provide higher thermal fatigue resistance and toughness. Higher austenitizing temperatures such as 1925(degrees)F compared to 1875(degrees)F provide better thermal fatigue resistance, but lower austenitizing temperatures of 1875(degrees)F provide better toughness. Higher hardness improves thermal fatigue resistance, but reduces toughness. A minimum of Rc 46 hardness is desired for aluminum die casting dies. EDM reduces the thermal fatigue resistance compared to conventional machining operations. When the EDM process of multiple small steps of decreasing energy and post-EDM treatments are employed, the effect can be reduced to a very slight amount. Preliminary evidence of the superior performance of the K steel has been provided by ongoing field testing of inserts in multiple cavity dies.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号