首页> 美国政府科技报告 >Frequency of growing season frost in the subalpine environment (Medicine Bow Mountains, southeastern Wyoming), the interaction of leaf morphology and infrared radiational cooling and the effects of freezing on native vegetation
【24h】

Frequency of growing season frost in the subalpine environment (Medicine Bow Mountains, southeastern Wyoming), the interaction of leaf morphology and infrared radiational cooling and the effects of freezing on native vegetation

机译:亚高山环境中生长季节霜冻的频率(医药弓山,怀俄明州东南部),叶片形态和红外辐射冷却的相互作用以及冻结对原生植被的影响

获取原文

摘要

The subalpine environment is characterized by the possibility of frost throughout the summer. The frequency and severity of summertime frost episodes appeared particularly dependent on net losses of infrared energy to a cold night sky (radiation frost), as well as air temperature and wind speed. Longwave radiation minima from the night sky were strongly correlated with the occurrence of leaf temperature minima. Leaf temperatures were modeled using an energy balance simulation that quantified the specific effects of ambient air temperature, wind speed, sky infrared radiation, and sky exposure characteristic of this high-elevation environment. Plants growing in exposed and sheltered habitats have characteristic leaf structures (smaller, thicker leaves in more exposed locations) that have been traditionally associated with the total amount of incident sunlight. However, smaller leaves also appear adaptive for reducing the susceptibility to radiation frosts. Larger, more exposed leaves resulted in colder nocturnal leaf temperatures and greater frost frequencies. Microsite sky radiation, microtopography, plant habit and leaf structure all have important implications for estimating growing season length and plant distribution patterns, especially at higher elevations where summer frosts are common. Radiational frosts at night are typically followed by clear skies and full-sun exposure the next morning. The combination of low temperature stress followed by high light exposure can result in strong photoinhibition of photosynthesis. The morphology of a variety of conifer needles as well as of a broadleaf was modeled to evaluate the effect on incident sunlight intensity. Conifer leaf morphology was found to be particularly adaptive for avoiding high incident light conditions compared to broadleaves.

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号