首页> 美国政府科技报告 >Silica-Titania Composite (STC)'s Performance in the Photocatalytic Oxidation of Polar VOCs
【24h】

Silica-Titania Composite (STC)'s Performance in the Photocatalytic Oxidation of Polar VOCs

机译:二氧化硅 - 二氧化钛复合物(sTC)在极性VOCs光催化氧化中的性能

获取原文

摘要

The objective of this paper is to determine the performance of a Silica-Titania Composite (STC) in the photocatalytic oxidation (PCO) of polar VOCs for potential applications in trace contaminant control within space habitats such as the ISS and CEV Orion. Tests were carried out in a bench scale STC-packed annular reactor under continuous illumination by either a UV-C germicidal lamp(lambda (sub max) = 254 nm) or UV-A fluorescent BLB (lambda(sub max) = 365 nm) for the removal of ethanol (a predominant polar VOC in the ISS cabin). The STC's performance was evaluated in terms of the ethanol mineralization rate, mineralization efficiency, and the extent of its oxidation intermediate (acetaldehyde) formation in response to the type of light source (photon energy and photon flux) and relative humidity (RH) implemented. Results demonstrated that acetaldehyde was the only quantifiable intermediate in the effluent under UV illumination, but was not found in the dark adsorption experiments. The mineralization rate increased with an increase in photon energy (UV-C greater than UV-A), even though both lamps were adjusted to emit the same incident photon flux, and also increased with increasing photon flux. However, photonic efficiency decreased as the photon flux increased. More importantly, a higher photon flux gave rise to a lower effluent acetaldehyde concentration. The effect of RH on PCO was complex and intriguing because it affected both physical adsorption and photocatalytic oxidation. In general, increasing RH caused a decrease in adsorption capacity for ethanol and reduced the mineralization efficiency with a concomitant higher acetaldehyde evolution rate. The effect of RH was less profound than that of photon flux.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号