首页> 美国政府科技报告 >A study of the noise mechanisms of transonic blade-vortex interactions
【24h】

A study of the noise mechanisms of transonic blade-vortex interactions

机译:跨音速叶片 - 涡旋相互作用的噪声机制研究

获取原文

摘要

Transonic blade-vortex interactions (BVI) are simulated numerically and the noise mechanisms are investigated. The two-dimensional high frequency transonic small disturbance equation is solved numerically (VTRAN2 code). An ADI scheme with monotone switches is used; viscous effects are included on the boundary, and the vortex is simulated by the cloud in cell method. The Kirchhoff method is used for the extension of the numerical two-dimensional near-field aerodynamic results to the linear acoustic three dimensional far field. The viscous effects (shock/boundary layer interactions) on BVI is investigated. The different types of shock motion are identified and compared. Two important disturbances with different directivity exist in the pressure signal and are believed to be related to the fluctuating lift and drag forces. Noise directivity for different cases is shown. The maximum radiation occurs at an angle between 60 and 90 degrees below the horizontal for an airfoil-fixed coordinate system and depends on the details of the airfoil shape. Different airfoil shapes are studied and classified according to the BVI noise produced.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号