首页> 美国政府科技报告 >Design and Evaluation of Steel Bridges with Double Composite Action
【24h】

Design and Evaluation of Steel Bridges with Double Composite Action

机译:双组合作用下钢桥设计与评价

获取原文

摘要

This report presents findings from a cooperative USF/URS/FDOT research study undertaken to develop design rules for double composite steel bridges. In the study, a 48 ft long, 16 ft wide, 4 ft. 10 1/8 in. deep trapezoidal HPS 70W box section designed to AASHTOfs LRFD 2004 specifications was fabricated and tested. The section has an 8 in. thick top slab and a 7 in. thick bottom slab and represented the entire negative moment region of a full-size, continuous bridge. The specimen was tested to evaluate fatigue, service and ultimate provisions of the AASHTO code. Instrumentation was provided to monitor load, strain, slip deflection and crack widths at critical locations. Results showed that after 5.6 million cycles of fatigue loading there was a 17% loss in stiffness but no slip. The service tests showed that 1% reinforcement for the top slab is adequate. The specimen failed due to crushing of the bottom slab caused by buckling of the thin (3/8 in.) bottom flange in the final service test. Finite element analysis was used to simulate the failure and showed that the bottom flange buckles at relatively low loads, but due to composite action with concrete at shear stud locations, it can still effectively carry additional compressive load until the bottom flange yields due to plastic buckling. Subsequently the concrete bottom slab carries all additional load until it crushes. Supplementary provisions are proposed for designing double composite members. These limit the maximum compressive stress in the bottom slab to 0.6f'c and set a requirement for the location of the neutral axis to ensure ductility. Due to the strain limit on the concrete bottom slab, it may not be possible to achieve net section plastic capacity. An illustrative numerical application of these rules is included as a MATHCAD file.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号