首页> 外文OA文献 >Incorporation of photochromic spiropyran compounds and spiropyran modified substrates into flow micro-systems
【2h】

Incorporation of photochromic spiropyran compounds and spiropyran modified substrates into flow micro-systems

机译:将光致变色螺吡喃化合物和螺吡喃修饰的底物掺入流动微系统中

摘要

Spiropyran is a well known family of photochromic compounds presenting the peculiar feature of being able to change their physical and chemical properties under external light modulation [1]. It has been demonstrated that even low-power light sources such as light emitting diodes (LEDs) can switch spiropyran molecules between an non-polar, uncoloured spiro form (SP) and a strongly coloured, zwitterionic merocyanine form (MC), which also possesses a phenolate binding site for metal guest species such as Cu2+ [2] and Co2+ [3], using white or UV light, respectively. MC-bound metal ions can be subsequently released using a green LED light source which converts the binding-MC back to the passive SP form [4]. udThe incorporation of spiropyran derivatives or spiro-modified substrates into flow micro-systems opens up intriguing possibilities for creating stationary phases whose binding behaviour can be externally modulated using light. We investigated this idea using two approaches. In one case, the stationary phases were generated by packing spiropyran functionalised silica and polystyrene microspheres [5] into polytetrafluoroethylene (PTFE)-coated fused silica capillaries (100 μm inner diameter). In the second, spiropyran compounds were used to create new monolithic stationary phases, using both a spiropyran monomer to synthesise a SP-derivatised monolith directly in silica capillaries, and a post-synthesis functionalisation strategy wherein the spiropyran is immobilised on the monolith’s inner surface after it has been formed in-situ.udThese SP-modified stationary phases have indeed shown light-induced reversible ion-binding capability (functionalised microspheres) and light-modulated electroosmotic nanoflow (spiropyran monoliths). In this talk the creation of these stationary phases and their light-modulated behaviour will be discussed.ududReferencesud[1] Durr, H.; Bouas-Laurent, H. Eds, Photochromism: Molecules and Systems, Elsevier, Amsterdam, 2003ud[2] Shao, N.; Zhang, Y.; Cheung, S.; Yang, R.; Chan, W.; Mo, T.; Li, K.; Liu, F. Anal. Chem., 2005, 77, 7294-7303.ud[3]. Byrne, R.; Stitzel, S.; Diamond, D. Mat. Chem., 2006, 16, 1332-1337ud[4]. Radu, A.; Scarmagnani, S.; Byrne, R.; Slater, C.; Lau, K. T.; Diamond, D., J. Physics D: Applied Physics 2007, 23, 7238-7244ud[5] Scarmagnani S.; Walsh Z.; Slater C.; Alhashimy N.; Paull B.; Macka M.; Diamond D., J. Mat. Chem., 2008, 18, 5063 – 5071.ud
机译:螺吡喃是众所周知的光致变色化合物家族,具有在外部光调制下能够改变其物理和化学性质的独特特征[1]。已经证明,即使是低功率光源,例如发光二极管(LED),也可以在非极性,无色螺旋形(SP)和色泽鲜艳的两性离子型花菁形式(MC)之间切换螺吡喃分子。一个金属客体物种(例如Cu2 + [2]和Co2 + [3])的酚盐结合位点,分别使用白光或紫外线。随后,可使用绿色LED光源释放与MC结合的金属离子,该光源将结合MC转换回无源SP形式[4]。将螺吡喃衍生物或螺修饰的底物掺入流动微系统中,为建立固定相提供了诱人的可能性,该固定相的结合行为可通过光外部调节。我们使用两种方法研究了这个想法。在一种情况下,固定相是通过将螺吡喃官能化的二氧化硅和聚苯乙烯微球[5]填充到聚四氟乙烯(PTFE)涂层的熔融二氧化硅毛细管(内径为100μm)中而产生的。在第二种方法中,螺吡喃化合物用于创建新的整体固定相,既使用螺吡喃单体直接在二氧化硅毛细管中合成SP衍生的整体,又采用合成后官能化策略,其中螺吡喃在固定后固定在整体的内表面上这些SP修饰的固定相确实显示了光诱导的可逆离子结合能力(功能化的微球)和光调制的电渗纳米流(spiropyran整体柱)。在本次演讲中,将讨论这些固定相的创建及其光调制行为。 ud ud参考文献 ud [1] Durr,H .; Bouas-Laurent,H。Eds,“光致变色:分子与系统”,爱思唯尔,阿姆斯特丹,2003 ud [2]张Y张南杨河; Chan W .; Mo,T .;李K刘芳肛门。化学,2005,77,7294-7303。 ud [3]。伯恩河; Stitzel,S。钻石,D。Mat。化学,2006,16,1332-1337 ud [4]。 Radu,A。 Scarmagnani,S .;伯恩河;斯莱特(C. Lau K.T .; Diamond,D.,J. Physics D:Applied Physics 2007,23,7238-7244 ud [5] Scarmagnani S .; Walsh Z .;斯莱特C. Alhashimy N .; Paull B .; Macka M .;钻石D.化学,2008,18,5063 –5071。 ud

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号