首页> 外文OA文献 >Process Modelling, Thermodynamic Analysis and Optimization of Dry Reforming, Partial Oxidation and Auto-Thermal Methane Reforming for Hydrogen and Syngas Production
【2h】

Process Modelling, Thermodynamic Analysis and Optimization of Dry Reforming, Partial Oxidation and Auto-Thermal Methane Reforming for Hydrogen and Syngas Production

机译:干法重整,部分氧化和甲烷自热重整制氢和合成气的过程建模,热力学分析和优化

摘要

In this work, process modelling, thermodynamic analysis and optimization of stand-alone dry and partial oxidation reforming of methane as well as, the auto-thermal reforming processes were investigated. Firstly, flowsheet models were developed for both the stand-alone systems and auto-thermal reforming process using ASPEN HYSYS®. Furthermore, thermodynamic studies were conducted for the stand-alone and auto-thermal reforming processes for temperatures range of 200–1000°C and pressure range of 1–3 bar using Gibbs free energy minimization methods which was also performed using ASPEN HYSYS®. The simulation of the auto-thermal reforming process was also performed at 20 bar to mimic industrial process. Process parameters were optimized in the combined reforming process for hydrogen production using desirability function. The simulation results show that 84.60 kg/h, 62.08 kg/h and 154.7 kg/h of syngas were produced from 144 kg/h, 113 kg/h and 211 kg/h of the gas fed into the Gibbs reactor at CH4/CO2/O2 ratio 1:1:1 for the stand-alone dry reforming, partial oxidation reforming and auto-thermal processes respectively. Equilibrium conversion of CH4, CO2, O2 were thermodynamically favoured between 400 and 800°C with highest conversions of 100%, 95.9% and 86.7% for O2, CO2 and CH4 respectively. Highest yield of 99% for H2 and 40% for CO at 800°C was obtained. The optimum conditions for hydrogen production were obtained at CH4/CO2, CH4/O2 ratios of 0.634, 0.454 and temperature of 800°C respectively. The results obtained in this study corroborate experimental studies conducted on auto-thermal reforming of methane for hydrogen and syngas production.
机译:在这项工作中,研究了甲烷的独立干法和部分氧化重整以及自动热重整过程的过程建模,热力学分析和优化。首先,使用ASPENHYSYS®为独立系统和自动热重整过程开发了流程图模型。此外,还使用Gibbs自由能最小化方法对独立的自动重整过程进行了热力学研究,温度范围为200–1000°C,压力范围为1-3 bar,这也使用ASPENHYSYS®进行。自动热重整过程的模拟也在20 bar下进行,以模仿工业过程。使用合意函数在联合重整过程中优化了工艺参数以生产氢气。模拟结果表明,在144 kg / h,113 kg / h和211 kg / h的气体以CH4 / CO2送入Gibbs反应器后,产生了84.60 kg / h,62.08 kg / h和154.7 kg / h的合成气。 / O2比为1:1:1,分别用于独立的干重整,部分氧化重整和自热过程。 CH4,CO2,O2的平衡转化率在400到800°C时热力学上受到支持,其中O2,CO2和CH4的最高转化率分别为100%,95.9%和86.7%。在800°C下,H2的最高收率为99%,CO的最高收率为40%。制氢的最佳条件分别在CH4 / CO2,CH4 / O2比为0.634、0.454和温度为800°C时获得。这项研究中获得的结果证实了对甲烷进行自热重整以生产氢气和合成气的实验研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号