首页> 外文OA文献 >Modeling of single mixed refrigerant process for offshore natural gas liquefaction
【2h】

Modeling of single mixed refrigerant process for offshore natural gas liquefaction

机译:海上天然气液化的单一混合制冷剂过程建模

摘要

The main objective of this thesis is to model a single mixed refrigerant process for offshore natural gas liquefaction using ASPEN HYSYS as a simulation tools.The liquefaction process employed in this part is a result of modification of previous case done by C.W.Remeljeja and A.F.A.Hoadley (2004). This work is divided into two sections.First is to model the PRICO LNG process that published result.Second is to improve the model by adding the mixer in the mixed refrigerant stream after the separator.It allows two different phase of gas and liquid of mixed refrigerant to mix together before entering the LNG Heat Exchanger (cold box).The mixer also helps to maintain a constant flow rate of the stream to the cold box.The results are obtained after the system is converged.When modeling the PRICO process in Aspen Hysys,certain variables such as temperature and pressure at the streams entering and leaving the cold box cannot be changed directly.This will cause temperature cross and change of mixed refrigerant phase in the respected stream.As a result,by doing structural modification on the basic PRICO process specifically in case 3,the load duty of the compressor can be lowered significantly.After three different structural modifications discussed in this paper, the compressor duty to liquefy the natural gas can be reduced down to 82300.46 kW when compared to the base case. As a conclusion,structural modification in case 3 is the best model when compare case 1 and case 2 because it operates in lowest compressor duty.For the future improvement,a different structure modification can be done using case 3 as a base model,for example replacing the valve with a multiphase expander to generate electricity in this LNG liquefaction process.
机译:本文的主要目的是使用ASPEN HYSYS作为模拟工具对海上天然气液化的单一混合制冷剂过程进行建模。本部分采用的液化过程是对CWRemeljeja和AFAHoadley( 2004)。这项工作分为两个部分:首先是对发布结果的PRICO LNG工艺进行建模;其次是通过在分离器之后的混合制冷剂流中添加混合器来改进模型。制冷剂在进入LNG热交换器(冷箱)之前先混合在一起,混合器还有助于保持流向冷箱的流量恒定,在系统收敛后获得结果。在Aspen中对PRICO过程进行建模时Hysys不能直接更改某些变量,例如进入和离开冷箱的流的温度和压力。这将导致温度跨度和相关流中混合制冷剂相的变化。因此,通过对基本结构进行结构修改特别是在情况3的PRICO过程中,可以显着降低压缩机的负载负荷。经过本文讨论的三种不同的结构修改,压缩机的负荷可以达到与基本案例相比,天然气可降低至82300.46 kW。综上所述,案例3的结构修改是比较案例1和案例2的最佳模型,因为它以最低的压缩机负荷运行。为了将来的改进,可以使用案例3作为基础模型进行不同的结构修改。在此液化天然气液化过程中,用多相膨胀器替换阀门以发电。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号