首页> 外文OA文献 >Development of dual phase magnesia-zirconia ceramics for light water reactor inert matrix fuel
【2h】

Development of dual phase magnesia-zirconia ceramics for light water reactor inert matrix fuel

机译:轻水反应堆惰性基质燃料用双相氧化镁氧化锆陶瓷的研制

摘要

Dual phase magnesia-zirconia ceramics were developed, characterized, and evaluated as a potential matrix material for use in light water reactor inert matrix fuel intended for the disposition of plutonium and minor actinides. Ceramics were fabricated from the oxide mixture using conventional pressing and sintering techniques. Characterization of the final product was performed using optical microscopy, scanning electron microscopy, x-ray diffraction analysis, and energy-dispersive x-ray analysis. The final product was found to consist of two phases: cubic zirconia-based solid solution and cubic magnesia. Evaluation of key feasibility issues was limited to investigation of long-term stability in hydrothermal conditions and assessment of the thermal conductivity. With respect to hydrothermal stability, it was determined that limited degradation of these ceramics at 300^oC occurred due to the hydration of the magnesia phase. Normalized mass loss rate, used as a quantitative indicator of degradation, was found to decrease exponentially with the zirconia content in the ceramics. The normalized mass loss rates measured in static 300^oC de-ionized water for the magnesia-zirconia ceramics containing 40, 50, 60, and 70 weight percent of zirconia are 0.00688, 0.00256, 0.000595, 0.000131 g/cm2/hr respectively. Presence of boron in the water had a dramatic positive effect on the hydration resistance. At 300^oC the normalized mass loss rates for the composition containing 50 weight percent of zirconia was 0.00005667 g/cm2/hr in the 13000 ppm aqueous solution of the boric acid. With respect to thermal conductivity, the final product exhibits values of 5.5-9.5 W/(m deg) at 500^oC, and 4-6 W/(m deg) at 1200^oC depending on the composition. This claim is based on the assessment of thermal conductivity derived from thermal diffusivity measured by laser flash method in the temperature range from 200 to 1200^oC, measured density, and heat capacity calculated using rule of mixtures. Analytical estimates of the anticipated maximum temperature during normal reactor operation in a hypothetical inert matrix fuel rod based on the magnesia-zirconia ceramics yielded the values well below the melting temperature and well below current maximum temperatures authorized in light water reactors.
机译:开发,表征和评估了双相氧化镁氧化锆陶瓷,将其作为潜在的基质材料用于轻水反应堆惰性基质燃料中,用于处置p和次act系元素。使用常规压制和烧结技术由氧化物混合物制成陶瓷。使用光学显微镜,扫描电子显微镜,X射线衍射分析和能量色散X射线分析对最终产品进行表征。发现最终产物由两相组成:立方氧化锆基固溶体和立方氧化镁。评估主要可行性问题仅限于研究热液条件下的长期稳定性以及评估热导率。关于水热稳定性,已确定由于氧化镁相的水合作用,这些陶瓷在300℃下发生了有限的降解。发现归一化的质量损失率,作为降解的定量指标,随陶瓷中氧化锆含量的增加呈指数下降。含有40、50、60和70重量%氧化锆的氧化镁-氧化锆陶瓷在静态300℃去离子水中测得的归一化质量损失率分别为0.00688、0.00256、0.000595和0.000131 g / cm2 / hr。水中的硼对水合作用具有显着的积极影响。在300℃下,在13000ppm的硼酸水溶液中,含有50重量%的氧化锆的组合物的归一化质量损失率为0.00005667g / cm 2 / hr。关于热导率,取决于组成,最终产物在500℃下显示5.5-9.5W /(m·度),在1200℃下显示4-6W /(m·度)。该要求基于对热导率的评估,该热导率是根据在200至1200oC的温度范围内通过激光闪光法测得的热扩散率,测得的密度以及使用混合物法则计算出的热容得出的。对基于氧化镁-氧化锆陶瓷的假设惰性基质燃料棒中正常反应堆运行期间预期最高温度的分析估计得出的值远低于熔化温度,且远低于轻水反应堆中批准的当前最高温度。

著录项

  • 作者

    Medvedev Pavel;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号