首页> 外文OA文献 >The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe-Mn-Al-Si steels during tensile deformation
【2h】

The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe-Mn-Al-Si steels during tensile deformation

机译:堆垛层错能对Fe-Mn-Al-Si钢拉伸变形过程中显微组织和应变硬化演变的影响

摘要

© 2015 Acta Materialia Inc. Understanding the relationship between the stacking-fault energy (SFE), deformation mechanisms, and strain-hardening behavior is important for alloying and design of high-Mn austenitic transformation- and twinning-induced plasticity (TRIP/TWIP) steels. The present study investigates the influence of SFE on the microstructural and strain-hardening evolution of three TRIP/TWIP alloys (Fe-22/25/28Mn-3Al-3Si wt.%). The SFE is increased by systemically increasing the Mn content from 22 to 28 wt.%. The Fe-22Mn-3Al-3Si alloy, with a SFE of 15 mJ m, deforms by planar dislocation glide and strain-induced ¿-/¿-martensite formation which occurs from the onset of plastic deformation, resulting in improved work-hardening at low strains but lower total elongation. With an increased SFE of 21 mJ m in the Fe-25Mn-3Al-3Si alloy, both mechanical twinning and ¿-martensite formation are activated during deformation, and result in the largest elongation of the three alloys. A SFE of 39 mJ m enables significant dislocation cross slip and suppresses ¿-martensite formation, causing reduced work-hardening during the early stages of deformation in the Fe-28Mn-3Al-3Si alloy while mechanical twinning begins to enhance the strain-hardening after approximately 10% strain. The increase in SFE from 15 to 39 mJ m results in significant changes in the deformation mechanisms and, at low strains, decreased work-hardening, but has a relatively small influence on strength and ductility.
机译:©2015 Acta Materialia Inc.了解堆垛层错能量(SFE),变形机制和应变硬化行为之间的关系,对于高锰奥氏体相变和孪晶诱发塑性(TRIP / TWIP)的合金化和设计非常重要。钢。本研究调查了SFE对三种TRIP / TWIP合金(Fe-22 / 25 / 28Mn-3Al-3Si wt。%)的组织和应变硬化演变的影响。通过系统地将Mn含量从22重量%增加到28重量%来增加SFE。 SFE为15 mJ m的Fe-22Mn-3Al-3Si合金会因平面位错滑移和应变诱发的-/-马氏体形成而变形,这是由于塑性变形的开始而产生的,从而改善了加工硬化低应变,但总伸长率较低。 Fe-25Mn-3Al-3Si合金的SFE增加21 mJ m,在变形过程中激活了机械孪晶和马氏体形成,并导致三种合金的最大伸长率。 39 mJ m的SFE可以显着错位错移并抑制马氏体的形成,从而在Fe-28Mn-3Al-3Si合金变形的早期阶段降低了加工硬化,而机械孪晶则在变形后开始增强应变硬化大约10%的应变。 SFE从15 mJ m增加到39 mJ m导致变形机制发生重大变化,并且在低应变下降低了加工硬化,但对强度和延展性的影响相对较小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号