首页> 外文OA文献 >Mechanisms of electron transport and recombination in ZnO nanostructures for dye-sensitized solar cells
【2h】

Mechanisms of electron transport and recombination in ZnO nanostructures for dye-sensitized solar cells

机译:染料敏化太阳能电池ZnO纳米结构中电子传输和复合的机理

摘要

ZnO is an attractive material for applications in dye-sensitized solar cells and related devices. This material has excellent electron-transport properties in the bulk but its electron diffusion coefficient is much smaller in mesoporous films. In this work the electron-transport properties of two different kinds of dye-sensitized ZnO nanostructures are investigated by small-perturbation electrochemical techniques. For nanoparticulate ZnO photoanodes prepared via a wet-chemistry technique, the diffusion coefficient is found to reproduce the typical behavior predicted by the multiple-trapping and the hopping models, with an exponential increase with respect to the applied bias. In contrast, in ZnO nanostructured thin films of controlled texture and crystallinity prepared via a plasma chemical vapor deposition method, the diffusion coefficient is found to be independent of the electrochemical bias. This observation suggests a different transport mechanism not controlled by trapping and electron accumulation. In spite of the quite different transport features, the recombination kinetics, the electron-collection efficiency and the photoconversion efficiency are very similar for both kinds of photoanodes, an observation that indicates that surface properties rather than electron transport is the main efficiency-determining factor in solar cells based on ZnO nanostructured photoanodes. Two very different behaviors of the electron-transport properties are found in nanostructured ZnO-based photoanodes. Texturized samples show a voltage-independent transport time, whereas films produced from nanocrystalline powders exhibit a voltage-dependent signal, consistent with trap-limited electron diffusion.
机译:ZnO是用于染料敏化太阳能电池和相关设备的有吸引力的材料。这种材料在整体上具有优异的电子传输性能,但在中孔膜中其电子扩散系数要小得多。在这项工作中,通过小扰动电化学技术研究了两种不同类型的染料敏化的ZnO纳米结构的电子传输性质。对于通过湿化学技术制备的纳米颗粒ZnO光阳极,发现其扩散系数可再现由多重捕获和跳跃模型预测的典型行为,并且相对于所施加的偏压呈指数增长。相反,在通过等离子体化学气相沉积法制备的具有受控的结构和结晶度的ZnO纳米结构薄膜中,发现扩散系数与电化学偏压无关。该观察结果表明不受俘获和电子积累控制的另一种传输机制。尽管传输特性截然不同,但两种光阳极的复合动力学,电子收集效率和光转换效率都非常相似,这一观察表明,表面性质而非电子传输是决定光电转换效率的主要因素。 ZnO纳米结构光阳极的太阳能电池。在纳米结构的基于ZnO的光阳极中发现了两种非常不同的电子传输特性。织构化的样品显示出与电压无关的传输时间,而由纳米晶体粉末生产的薄膜则显示出与电压相关的信号,与陷阱限制的电子扩散一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号