首页> 外文OA文献 >High Throughput Field Phenotyping of Wheat Plant Height and Growth Rate in Field Plot Trials Using UAV Based Remote Sensing
【2h】

High Throughput Field Phenotyping of Wheat Plant Height and Growth Rate in Field Plot Trials Using UAV Based Remote Sensing

机译:基于UAV的田间试验中小麦株高和生长速率的高通量表型分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

There is a growing need to increase global crop yields, whilst minimising use of resources such as land, fertilisers and water. Agricultural researchers use ground-based observations to identify, select and develop crops with favourable genotypes and phenotypes; however, the ability to collect rapid, high quality and high volume phenotypic data in open fields is restricting this. This study develops and assesses a method for deriving crop height and growth rate rapidly from multi-temporal, very high spatial resolution (1 cm/pixel), 3D digital surface models of crop field trials produced via Structure from Motion (SfM) photogrammetry using aerial imagery collected through repeated campaigns flying an Unmanned Aerial Vehicle (UAV) with a mounted Red Green Blue (RGB) camera. We compare UAV SfM modelled crop heights to those derived from terrestrial laser scanner (TLS) and to the standard field measurement of crop height conducted using a 2 m rule. The most accurate UAV-derived surface model and the TLS both achieve a Root Mean Squared Error (RMSE) of 0.03 m compared to the existing manual 2 m rule method. The optimised UAV method was then applied to the growing season of a winter wheat field phenotyping experiment containing 25 different varieties grown in 27 m2 plots and subject to four different nitrogen fertiliser treatments. Accuracy assessments at different stages of crop growth produced consistently low RMSE values (0.07, 0.02 and 0.03 m for May, June and July, respectively), enabling crop growth rate to be derived from differencing of the multi-temporal surface models. We find growth rates range from −13 mm/day to 17 mm/day. Our results clearly display the impact of variable nitrogen fertiliser rates on crop growth. Digital surface models produced provide a novel spatial mapping of crop height variation both at the field scale and also within individual plots. This study proves UAV based SfM has the potential to become a new standard for high-throughput phenotyping of in-field crop heights.
机译:越来越需要增加全球农作物的产量,同时尽量减少对土地,肥料和水等资源的利用。农业研究人员利用地面观测来鉴定,选择和发展具有良好基因型和表型的农作物。但是,在开放领域中收集快速,高质量和大量表型数据的能力限制了这一点。这项研究开发并评估了一种方法,该方法可通过多时相,非常高的空间分辨率(1厘米/像素),通过运动(SfM)结构摄影测量法使用航空影像生成的作物田间试验的3D数字表面模型来快速得出作物高度和生长速率通过反复的运动收集的图像,这些运动是使用已安装的红绿蓝(RGB)相机驾驶无人飞行器(UAV)。我们将UAV SfM建模的作物高度与从陆地激光扫描仪(TLS)导出的高度进行了比较,并与使用2 m规则进行的作物高度的标准现场测量进行了比较。与现有的手动2 m规则方法相比,最精确的源自无人机的曲面模型和TLS均实现了0.03 m的均方根误差(RMSE)。然后将优化的UAV方法应用于冬小麦表型试验的生长季节,该试验包含在27平方米的土地上种植的25个不同品种,并经过四种不同的氮肥处理。作物生长不同阶段的准确性评估产生的RMSE值始终较低(5月,6月和7月分别为0.07、0.02和0.03 m),从而使作物生长速率可以通过多时相表面模型的差异得出。我们发现增长率范围从-13毫米/天到17毫米/天。我们的结果清楚地显示了可变氮肥用量对作物生长的影响。产生的数字表面模型不仅在田间尺度上而且在单个地块内都提供了作物高度变化的新颖空间映射。这项研究证明基于无人机的SfM有潜力成为田间作物高度高通量表型分析的新标准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号