首页> 外文OA文献 >Concepts Used to Analyze and Determine Rock Slope Stability for Mining Civil Engineering Applications
【2h】

Concepts Used to Analyze and Determine Rock Slope Stability for Mining Civil Engineering Applications

机译:用于采矿和土木工程应用的分析和确定岩质边坡稳定性的概念

摘要

Slope stability plays an important role in rock engineering. During the design, construction and post design phases of rock slope stability, engineers and geologists need to pay close attention to the rock conditions within the rock slope to prevent slope failures, protect employees and maintain economic profit. This dissertation is based on a general four step procedure to construct and maintain rock slope stability with confidence. These four steps include field investigations, material testing and rock strength database, slope modelling and slope monitoring. The author provides past, present and alternatives methods for each step for the introduced slope stability procedure. Specific topics within each step are investigated displaying results, recommendations and conclusions. Step one involves data collection during field investigations for rock slope design. Orientation of rock core during drilling programs has become extremely pertinent and important for slope stability and underground mining operations. Orientation is needed to provide essential data to describe the structure and properties of discontinuities encountered during the design process to understand favourable and unfavourable conditions within a rock slope and underground openings. This chapter examines and discusses the limitations and benefits of four methods of obtaining borehole discontinuity orientations from drilling programs including clay-imprint, ACT I, II, III Reflex, EZY-MARK, and OBI/ABI Televiewer systems. Results, recommendations and conclusions are provided in this study. During step two to maintain rock slope stability, a rock strength database was created and used to correlate and compare RQD values to rock abrasion, shear strength and other rock characterization methods. Rock abrasion plays a significant role in geotechnical design, tunneling operations and the safety of foundations from scour; however, rock abrasion can be used to develop higher confidence in important parameters such as RQD and hardness. More rock abrasivity research is needed to provide a more accurate and compatible method for all subsurface material properties used in mining and civil engineering projects. This report will provide simple correlations relating abrasion resistance to RQD, UCS, Geological Strength Index (GSI) and Rock Mass Rating (RMR) of metamorphic rock. Results, discussions and conclusions are provided. Step 3 to determine rock slope stability entails utilizing computer modeling to predict failure conditions and wear rock mass properties. Computer modeling and slope monitoring for rock slopes have become essential to assess factor of safety (FOS) values to predict slope instability and estimate potential failure. When utilizing computer models, the limit equilibrium method (LEM) provides FOS values according to force and moment equilibrium; the shear strength reduction (SSR) technique calculates FOS using stress- and deformation-based analyses. Currently, both methods are prevalent in the engineering industry and applied by geotechnical engineers to analyze and determine stability in rock slopes for mining and civil engineering projects. Slope modeling techniques are then used to observe slope conditions and predict when slope failure may occur (FOS = 1.0). Comparison, results and conclusions are presented. Lastly, the dissertation (step 4: slope monitoring) will investigate past studies of FOS comparisons, review calculation methods and provide procedures and results using remote sensing data. The main objective of the dissertation is to provide engineers with essential information needed to ensure high confidence in factor of safety predictions and how alternative methods can be utilized. Recommendations, future research and conclusions regarding FOS and slope monitoring are provided within the dissertation.
机译:边坡稳定性在岩石工程中起着重要作用。在岩质边坡稳定性的设计,施工和后期设计阶段,工程师和地质学家需要密切注意岩质边坡内的岩石状况,以防止边坡破坏,保护员工并保持经济利益。本文是基于一般的四步法建立并保持岩质边坡稳定性的方法。这四个步骤包括现场调查,材料测试和岩石强度数据库,边坡建模和边坡监测。作者为引入的边坡稳定性程序的每个步骤提供了过去,现在和替代方法。调查每个步骤中的特定主题,显示结果,建议和结论。第一步涉及在实地调查期间为岩质边坡设计收集数据。钻探过程中岩心的定向已经变得极为相关,对于边坡稳定性和地下采矿作业也很重要。需要方向来提供必要的数据,以描述在设计过程中遇到的间断的结构和特性,以了解岩石边坡和地下洞口内的有利和不利条件。本章研究并讨论了从钻井程序中获得井眼不连续性方位的四种方法的局限性和好处,包括粘土压印,ACT I,II,III Reflex,EZY-MARK和OBI / ABI Televiewer系统。这项研究提供了结果,建议和结论。在维护岩石边坡稳定性的第二步中,创建了岩石强度数据库,并使用该数据库将RQD值与岩石磨损,剪切强度和其他岩石表征方法进行关联和比较。岩石磨损在岩土工程设计,隧道作业和地基免受冲刷的安全方面起着重要作用;但是,岩石磨蚀可用于提高诸如RQD和硬度等重要参数的可信度。需要进行更多的岩石耐磨性研究,以便为采矿和土木工程项目中使用的所有地下材料特性提供更​​准确和兼容的方法。该报告将提供与变质岩的RQD,UCS,地质强度指数(GSI)和岩体质量等级(RMR)的耐磨性相关的简单关联。提供了结果,讨论和结论。确定岩石边坡稳定性的步骤3需要利用计算机模型来预测破坏条件和磨损岩体特性。岩石边坡的计算机建模和边坡监测对于评估安全系数(FOS)值以预测边坡失稳和估计潜在破坏已变得至关重要。当使用计算机模型时,极限平衡法(LEM)根据力和力矩平衡提供FOS值。抗剪强度降低(SSR)技术使用基于应力和变形的分析来计算FOS。当前,这两种方法在工程行业中都很普遍,并被岩土工程师应用,以分析和确定采矿和土木工程项目的岩质边坡稳定性。然后,使用边坡建模技术观察边坡状况并预测何时可能发生边坡破坏(FOS = 1.0)。进行比较,结果和结论。最后,论文(第4步:边坡监测)将研究FOS比较的过去研究,回顾计算方法,并使用遥感数据提供程序和结果。本文的主要目的是为工程师提供必要的基本信息,以确保他们对安全性预测因素以及如何使用替代方法具有高度的信心。论文提供了有关FOS和边坡监测的建议,未来研究和结论。

著录项

  • 作者

    Ureel Scott Daniel;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号