首页> 外文OA文献 >Using a catchment contour approach for simulation of ground and surface water behaviour within agent based modelling platforms.
【2h】

Using a catchment contour approach for simulation of ground and surface water behaviour within agent based modelling platforms.

机译:在基于智能体的建模平台中使用流域轮廓方法来模拟地下水和地表水的行为。

摘要

Agent based modelling (ABM) environments are becoming increasingly popular for investigating the effects of land use change. The ABM environment enables models to be developed that simulate biophysical, economic and social processes at different spatial and temporal scales. The smallest spatial area modelled here is the paddock at a daily temporal resolution, therefore enabling daily interaction of the biophysical and social processes at the paddock scale. Shown here are the steps towards the development of the large scale catchment model that captures the finer spatial and temporal paddock scale processes. These steps involve deciding on the catchment area that captures the land use change to be investigated. Dividing the catchment into subcatchments and defining an appropriate number of contour segments depending on the area of the paddocks to be modelled. Paddock runoff and groundwater flow is modelled using a water balance model. Within each contour segment, runoff is summed and groundwater flow is calculated in a representative radial crosssection using a groundwater model. Contours provide an improvement to catchment modelling as the number of contours generated could also depend on the availability of model parameter data therefore simplifying the reuse of the model within other catchments. The Recursive Porous Agent Simulation Toolkit (Repast), which is an ABM environment, is used to build the Single Entity Policy Impact Assessment (SEPIA) model. SEPIA provides a modelling platform that combines the social agents (land managers) with the biophysical agents (surface and groundwater hydrology models) and spatial agents (subcatchments, contours, paddocks, etc). The results presented here use the SEPIA model version that was established for the Bowen Broken catchment, Queensland, Australia. This version of SEPIA includes land managers for beef cattle (grazing) production. SEPIA models the social world of the Bowen Broken catchment by creating land manager beef cattle production agents and simulates their behaviour resulting in the enactment of one of a number of possible land-use strategies. The land managers make land-use decisions which in turn have effects on biophysical conditions, the level of financial payoffs associated with agricultural production and a desire to maintain or improve the state of the biophysical environment. The land manager's decision to enact a land-use strategy is also influenced by exposure to changes in the biophysical world like sediment, cover, climate and yield variations at the finer daily temporal and paddock spatial scale. This then affects the manager's sense of environmental wellbeing for the property. For the purpose of this paper we use the biophysical world within SEPIA to estimate paddock scale sediment results to demonstrate the importance of finer scale modelling. If SEPIA used an annual sediment model then the outcomes may be quite different where the relationship between sediment and precipitation may be assumed more linear. Here we are able to model daily pasture growth and expose slower winter and faster summer growth patterns. The effect of slower winter growth reduces total paddock biomass and may effect cover factor depending on a number of other modelled variables (stocking rate, etc). Higher winter rainfall combined with lower cover factors or extended dry periods preceding a wet year typically drive the increase in sediment export during those years. Although SEPIA does produce daily and annual sediment figures it is important to consider the uncertainty related to the model inputs and consequent outputs. This uncertainty is primarily driven by the lack of understanding of the biophysical processes at play and the deficiency in measured field data at required scale and frequency.
机译:基于代理的建模(ABM)环境在调查土地用途变化的影响方面正变得越来越流行。 ABM环境使模型得以开发,以模拟不同时空尺度上的生物物理,经济和社会过程。此处建模的最小空间区域是围场,处于每日时间分辨率,因此可以在围场规模上实现生物物理过程和社会过程的日常交互。这里显示的是开发大型集水区模型的步骤,该模型捕获了更精细的空间和时间围场规模过程。这些步骤涉及确定捕获要调查的土地用途变化的集水区。将流域划分为子流域,并根据要建模的围场面积定义适当数量的轮廓线段。围场径流和地下水流量使用水平衡模型建模。在每个等高线段内,使用地下水模型对径流进行求和,并在代表性径向截面中计算地下水流量。轮廓为流域建模提供了一种改进,因为生成的轮廓数量还取决于模型参数数据的可用性,因此简化了模型在其他流域内的重用。递归多孔代理仿真工具包(Repast)是ABM环境,用于构建单实体策略影响评估(SEPIA)模型。 SEPIA提供了一个建模平台,该平台将社会媒介(土地管理者)与生物物理媒介(地表水和地下水水文模型)和空间媒介(子汇水面积,等高线,围场等)结合在一起。此处显示的结果使用的是SEPIA模型版本,该模型版本是为澳大利亚昆士兰州的鲍文·布罗肯集水区建立的。此版本的SEPIA包括用于肉牛(放牧)生产的土地管理人员。 SEPIA通过创建土地管理者肉牛生产代理人来模拟Bowen Broken流域的社会世界,并模拟其行为,从而制定了多种可能的土地利用策略之一。土地管理者做出土地使用决策,进而影响生物物理条件,与农业生产相关的经济收益水平以及维持或改善生物物理环境状况的愿望。土地管理者制定土地利用策略的决定还受到生物物理世界变化的影响,例如在更精细的日常时间和围场空间尺度上的沉积物,覆盖率,气候和产量变化。然后,这会影响经理对物业的环境幸福感。出于本文的目的,我们使用SEPIA中的生物物理世界来估算围场规模的沉积物结果,以证明更精细规模建模的重要性。如果SEPIA使用年度沉积物模型,那么在沉积物与降水之间的关系可能更线性的情况下,结果可能会大不相同。在这里,我们能够对牧场的每日生长进行建模,并揭示冬季变慢和夏季更快的生长方式。冬季生长缓慢的影响会降低围场的总生物量,并可能影响覆盖率,具体取决于许多其他建模变量(放养率等)。冬季较高的降雨加上较低的覆盖因子,或在潮湿的一年之前干旱时间延长,通常会导致这些年份的沉积物出口增加。尽管SEPIA确实会产生每日和每年的沉积物数据,但重要的是要考虑与模型输入和后续输出有关的不确定性。这种不确定性主要是由于缺乏对正在发挥作用的生物物理过程的理解以及在所需规模​​和频率下实地数据的缺乏所致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号