首页> 外文OA文献 >Classification of instabilities in the flow past flexible surfaces
【2h】

Classification of instabilities in the flow past flexible surfaces

机译:通过柔性表面的流动中的不稳定性分类

摘要

The stability of the laminar flow in flexible tubes and channels could be influenced by the flexibility of the walls, and these instabilities are qualitatively different from those in rigid tubes and channels. In this paper, the instabilities of the laminar flow in flexible tubes and channels are classified according to the asymptotic regime in which they are observed, the flow structure, the scaling of the critical Reynolds number (rVR/m) with the dimensionless parameter å = (rGR2/m2), and the mechanism that destabilizes the flow. Here, r and m are the fluid density and viscosity,G is the shear modulus of the wall material, R is the cross stream length scale and V is the maximum velocity. Three types of instabilities have been analysed. The viscous instability is observed in the limit of low Reynolds number when the fluid inertia is insignificant, and the critical Reynolds number scales as Re µ å. The destabilizing mechanism is the transfer of energy from the mean flow to the fluctuations due to the shear work done by the mean flow at the surface. In the high Reynolds number inviscid modes, the critical Reynolds number scales are Re µ å1/2, and there is a critical layer of thickness Re–1/3 where viscous stresses are important. The destabilizing mechanism is the transfer of energy from the mean flow to the fluctuations due to the Reynolds stresses in the critical layer. The high Reynolds number wall mode instability has a wall layer of thickness Re–1/3 at the wall, where viscous stresses are important and the critical Reynolds number scales as Re µ å3/4. The destabilizing mechanism is the transfer of energy from the mean flow to the fluctuations due to the shear work done by the mean flow at the interface.
机译:柔性管和通道中层流的稳定性可能会受到壁的柔性的影响,并且这些不稳定性与刚性管和通道中的不稳定性在质量上有所不同。在本文中,根据观察到的渐近状态,流动结构,具有无量纲参数å=的临界雷诺数(rVR / m)的比例,对挠性管和通道中层流的不稳定性进行分类。 (rGR2 / m2),以及使流量不稳定的机制。这里,r和m是流体密度和粘度,G是壁材料的剪切模量,R是横流长度尺度,V是最大速度。已经分析了三种类型的不稳定性。当流体惯性不大时,在低雷诺数的极限中观察到粘性不稳定性,并且临界雷诺数的标度为Re µå。失稳机制是能量从平均流量到由于地面平均流量完成的剪切功而引起的波动传递。在高雷诺数无粘模式下,临界雷诺数标度为Re µå1 / 2,并且存在一个厚度为Re–1 / 3的临界层,其中粘性应力很重要。失稳机制是能量从平均流转移到由于临界层中的雷诺应力而引起的波动。雷诺数高的壁模式不稳定性在壁上的壁层厚度为Re–1 / 3,其中粘性应力很重要,临界雷诺数的尺度为Re µå3 / 4。失稳机制是能量从平均流量到由于界面处的平均流量完成的剪切功而引起的波动传递。

著录项

  • 作者

    Kumaran V;

  • 作者单位
  • 年度 2000
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号