首页> 外文OA文献 >Nanophotonics for Optoelectronic Devices: Extrinsic Silicon Photonic Receivers and Organic Photovoltaics
【2h】

Nanophotonics for Optoelectronic Devices: Extrinsic Silicon Photonic Receivers and Organic Photovoltaics

机译:用于光电设备的纳米光子学:外部硅光子接收器和有机光伏

摘要

The demand for high data rate communications and renewable energy sources has led to new materials and platforms for optoelectronic devices, which require nanometer scale feature sizes. Devices that operate in the visible and near-infrared commonly have active areas with dimensions on the order of the diffraction limit λ/2^n, where λ is the free space wavelength and n is the index of refraction, for which the ray optics modeling techniques and bulk focusing optics traditionally used in optoelectronic device design are no longer applicable. In this subwavelength regime, nanophotonic light-trapping strategies are required to localize electromagnetic fields in the active area. This dissertation details the application of nanophotonics to two optoelectronic systems: extrinsic photodetectors for silicon photonics and light-trapping in organic photovoltaics. Error-free reception of 10 Gb/s data at λ = 1.55 μm is demonstrated with a Si⁺ ion-implanted silicon waveguide photodiode. To mitigate the relatively small absorption coefficient of ion-implanted silicon, resonant cavity enhancement using in-line Fabry-Pérot and 1D photonic crystal cavities, as well as slow light enhancement using a coupled resonator optical waveguide are discussed. The extension of these photodiodes to the mid-infrared is demonstrated using Zn⁺ implantation to detect over a range of λ = 2.2-2.4 μm, and a new method for modulation and switching in integrated optics by using interference in a resonant cavity, termed coherent perfect loss (CPL), is presented. Finally, the upper limit of nanophotonic light trapping is derived for organic photovoltaics with material anisotropy included.
机译:对高数据速率通信和可再生能源的需求导致了用于光电器件的新材料和平台,这些材料和平台需要纳米尺度的特征尺寸。在可见光和近红外光下运行的设备通常具有尺寸约为衍射极限λ/ 2 ^ n的有效区域,其中λ是自由空间波长,n是折射率,对此进行射线光学建模光电设备设计中传统使用的光学技术和体聚焦光学器件不再适用。在这种亚波长范围内,需要纳米光子捕获策略来将电磁场定位在有源区域中。本文详细介绍了纳米光子学在两个光电系统中的应用:用于硅光子学的外在光电探测器和有机光伏中的光阱。用注入Si 3+离子的硅波导光电二极管证明了在λ= 1.55μm时无错误接收10 Gb / s数据。为了减轻离子注入的硅的相对较小的吸收系数,讨论了使用在线Fabry-Pérot和一维光子晶体腔增强谐振腔,以及使用耦合谐振腔光波导进行缓慢光增强的问题。使用Zn⁺注入来检测λ= 2.2-2.4μm的范围,以及通过利用谐振腔中的干涉来对集成光学器件进行调制和切换的新方法(称为相干),证明了这些光电二极管向中红外的延伸。介绍了完美损失(CPL)。最后,推导了包含材料各向异性的有机光伏电池的纳米光子捕获的上限。

著录项

  • 作者

    Grote Richard;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号