首页> 外文OA文献 >Adaptive Speed Controller for the SeaFox Autonomous Surface Vessel
【2h】

Adaptive Speed Controller for the SeaFox Autonomous Surface Vessel

机译:适用于SeaFox自主水面舰艇的自适应速度控制器

摘要

The thesis addressed the control system development for a high-speed surface vessel. In particular, the work utilized modern adaptive control techniques to design a speed following controller for the SeaFox ASV; the vehicle features three distinct speed, regimes including the displacement, rapid transition and planing regimes. The study started with the collection of experimental data required to characterize the operating modes and the inherent nonlinear phenomena of the high-speed ASV. Then, it proceeded to system identification study with an objective to develop a mathematical model of the vehicle thus aiming to represent the ASVs speed dynamics at various regimes and to facilitate control system development. After completing the model development, three speed following controllers were designed A classical Proportional-Integral-Derivative (PID), a nonlinear Model Reference Adaptive (MRAC) and a L1 Adaptive Controller. The motivation behind the choice of three different controllers is two-fold. First, comparison of the linear and nonlinear control approaches is desired to better illustrate the achievable control architecture limitations. Second, comparing two types of nonlinear adaptive control architectures allowed the selection of the best control algorithm for operating the ASV speed in the presence of highly non-linear dynamics and significant disturbances acting on it. Furthermore, each controller is integrated with the SeaFox mathematical model and implemented with and without realistic operational disturbances. This provided a basis for objective comparison among the controllers and gave a means to demonstrate their relative robustness and performance characteristics. Finally, the MRAC and the PID controller were implemented onboard the actual SeaFox ASV and tested in numerous sea-trials under natural conditions to once again demonstrate the advantages and limitations of the chosen control architectures.
机译:本文讨论了高速水面舰艇控制系统的发展。特别是,这项工作利用了现代的自适应控制技术来为SeaFox ASV设计速度跟踪控制器。该车辆具有三种不同的速度,包括位移,快速过渡和滑行状态。该研究从收集表征高速ASV的工作模式和固有非线性现象所需的实验数据开始。然后,它进行了系统识别研究,目的是开发车辆的数学模型,从而代表各种状态下的ASV速度动态并促进控制系统的开发。完成模型开发后,设计了三种速度跟随控制器:经典比例积分微分(PID),非线性模型参考自适应(MRAC)和L1自适应控制器。选择三种不同控制器的动机是双重的。首先,需要对线性和非线性控制方法进行比较,以更好地说明可实现的控制体系结构的局限性。其次,比较两种类型的非线性自适应控制体系结构可以选择最佳的控制算法,以在存在高度非线性动力学和严重干扰的情况下操作ASV速度。此外,每个控制器都与SeaFox数学模型集成在一起,可以在有或没有实际操作干扰的情况下实施。这为控制器之间的客观比较提供了基础,并提供了一种方法来证明它们的相对鲁棒性和性能特征。最后,MRAC和PID控制器在实际的SeaFox ASV上执行,并在自然条件下的大量海试中进行了测试,以再次证明所选控制架构的优势和局限性。

著录项

  • 作者

    Hurban Michael A.;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号