首页> 外文OA文献 >Low-Temperature Anaerobic Membrane Bioreactor for Energy Recovery from Domestic Wastewater.
【2h】

Low-Temperature Anaerobic Membrane Bioreactor for Energy Recovery from Domestic Wastewater.

机译:低温厌氧膜生物反应器处理生活污水的能量回收。

摘要

Anaerobic membrane bioreactor (AnMBR) treatment, which combines the anaerobic microbial conversion of organic compounds into methane-rich biogas with membrane separation of treated wastewater and microbial biomass, has been proposed for direct energy recovery from domestic wastewater. We demonstrated in a bench-scale investigation that AnMBR can achieve 92 ± 5% chemical oxygen demand (COD) removal at 15°C, but that dissolved methane in the permeate represents 40-50% of the total methane produced. If unrecovered, this methane is a lost energy source and results in substantial greenhouse gas emissions. This work motivated an evaluation of the trade-offs between the membrane biofilm’s role in treatment and its contribution to fouling. We demonstrated that the development of a biofilm enriched in active syntrophic bacteria and methanogens significantly improved effluent quality, while maintaining acceptable fluxes. However, methanogenesis in the biofilm resulted in substantial levels of dissolved methane in the permeate. The lower temperature limit of AnMBR treatment was explored by sequentially lowering the operating temperature of the system from 15, 12, 9, 6, to 3°C under conditions supporting biofilm treatment. COD removal > 95% was achieved at temperatures as low as 6°C. COD removal fell to 86 ± 4.0% at 3°C and, at this temperature, essentially all COD removal occurred in the biofilm, suggesting that the biofilm was less inhibited by temperature decreases than the suspended biomass. Finally, we evaluated the life cycle environmental and economic impacts of AnMBR technology compared to aerobic treatment systems. AnMBR will not be net energy positive in the foreseeable future without reduction in fouling control energy demands.Currently, AnMBR is better suited for higher strength domestic wastewater treatment. Further, global warming impacts were over an order of magnitude higher than aerobic systems arising from the direct emission of effluent dissolved methane. Future research is necessary to (1) promote increased biological activity in suspended biomass at low temperatures such that membrane biofilm treatment is reduced and dissolved methane oversaturation avoided, (2) develop low-energy dissolved methane recovery technologies to limit global warming impacts, and (3) establish fouling control strategies that reduce energy demands thereby improving the net energy balance.
机译:厌氧膜生物反应器(AnMBR)处理将有机化合物的厌氧微生物转化为富甲烷沼气与处理后的废水和微生物生物质的膜分离相结合,已被提出用于从生活废水中直接回收能量。我们在实验室规模的研究中证明,AnMBR在15°C时可实现92±5%的化学需氧量(COD)去除,但是渗透液中溶解的甲烷占总甲烷产量的40-50%。如果无法回收,则这种甲烷是一种失去的能源,会导致大量的温室气体排放。这项工作促使人们对膜生物膜在处理中的作用及其对结垢的贡献之间的权衡进行评估。我们证明了富集活性食性细菌和产甲烷菌的生物膜的开发显着改善了污水质量,同时保持了可接受的通量。然而,生物膜中的甲烷生成导致渗透物中大量溶解的甲烷。通过在支持生物膜处理的条件下将系统的工作温度从15、12、9、6依次降低到3°C,探索了AnMBR处理的温度下限。在低至6°C的温度下,COD去除率> 95%。在3°C下,COD的去除率降至86±4.0%,在此温度下,基本上所有的COD去除都发生在生物膜中,这表明生物膜受温度降低的抑制作用要比悬浮的生物质小。最后,我们比较了有氧处理系统对AnMBR技术在生命周期中的环境和经济影响。如果不减少结垢控制能源的需求,AnMBR在可预见的未来将不会成为净能源的积极来源。目前,AnMBR更适合于高浓度生活污水的处理。此外,由于废水中溶解的甲烷的直接排放,全球变暖的影响比有氧系统高出一个数量级。有必要进行进一步的研究,以(1)在低温下促进悬浮生物质中增加的生物活性,从而减少膜生物膜处理并避免溶解的甲烷过饱和;(2)开发低能耗的溶解甲烷回收技术以限制全球变暖的影响,以及( 3)建立减少能源需求的结垢控制策略,从而改善净能源平衡。

著录项

  • 作者

    Smith Adam L.;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号