首页> 外文OA文献 >A theory of how active behavior stabilises neural activity: neural gain modulation by closed-loop environmental feedback
【2h】

A theory of how active behavior stabilises neural activity: neural gain modulation by closed-loop environmental feedback

机译:关于主动行为如何稳定神经活动的理论:通过闭环环境反馈进行神经增益调制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

During active behaviours like running, swimming, whisking or sniffing, motor actions shape sensory input and sensory percepts guide future motor commands. Ongoing cycles of sensory and motor processing constitute a closed-loop feedback system which is central to motor control and, it has been argued, for perceptual processes. This closed-loop feedback is mediated by brainwide neural circuits but how the presence of feedback signals impacts on the dynamics and function of neurons is not well understood. Here we present a simple theory suggesting that closed-loop feedback between the brain/body/environment can modulate neural gain and, consequently, change endogenous neural fluctuations and responses to sensory input. We support this theory with modeling and data analysis in two vertebrate systems. First, in a model of rodent whisking we show that negative feedback mediated by whisking vibrissa can suppress coherent neural fluctuations and neural responses to sensory input in the barrel cortex. We argue this suppression provides an appealing account of a brain state transition (a marked change in global brain activity) coincident with the onset of whisking in rodents. Moreover, this mechanism suggests a novel signal detection mechanism that selectively accentuates active, rather than passive, whisker touch signals. This mechanism is consistent with a predictive coding strategy that is sensitive to the consequences of motor actions rather than the difference between the predicted and actual sensory input. We further support the theory by re-analysing previously published two-photon data recorded in zebrafish larvae performing closed-loop optomotor behaviour in a virtual swim simulator. We show, as predicted by this theory, that the degree to which each cell contributes in linking sensory and motor signals well explains how much its neural fluctuations are suppressed by closed-loop optomotor behaviour. More generally we argue that our results demonstrate the dependence of neural fluctuations, across the brain, on closed-loop brain/body/environment interactions strongly supporting the idea that brain function cannot be fully understood through open-loop approaches alone.
机译:在诸如跑步,游泳,拂打或嗅探之类的活跃行为中,运动动作会影响感觉输入,而感觉知觉会指导未来的运动命令。感觉和运动过程的持续循环构成了闭环反馈系统,该系统对于运动控制至关重要,并且已经被认为是感知过程。这种闭环反馈是由大脑的神经回路介导的,但是反馈信号的存在如何影响神经元的动力学和功能尚不清楚。在这里,我们提出一个简单的理论,表明大脑/身体/环境之间的闭环反馈可以调节神经增益,从而改变内源性神经波动和对感觉输入的响应。我们在两个脊椎动物系统中通过建模和数据分析来支持这一理论。首先,在啮齿动物的鞭打模型中,我们表明,由鞭打触须介导的负反馈可以抑制相干神经波动和对桶状皮质感觉输入的神经反应。我们认为这种抑制提供了与啮齿动物发生打扫的同时发生的大脑状态转变(全球大脑活动的显着变化)的诱人解释。此外,该机制提出了一种新颖的信号检测机制,该机制可选择性地增强主动(而非被动)晶须触摸信号。该机制与对运动动作的后果而不是预测的和实际的感觉输入之间的差异敏感的预测编码策略一致。我们通过重新分析以前在虚拟游泳模拟器中执行闭环光电行为的斑马鱼幼虫中记录的两光子数据来进一步支持该理论。正如该理论所预测的,我们表明,每个细胞在连接感觉和运动信号方面的贡献程度很好地说明了闭环光动力行为能抑制多少神经波动。更广泛地说,我们认为我们的结果证明了整个大脑的神经波动对闭环大脑/身体/环境相互作用的依赖性,这强烈支持仅靠开环方法无法完全理解大脑功能的观点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号