首页> 外文OA文献 >All-optical signal processing in novel highly nonlinear fibres and waveguides
【2h】

All-optical signal processing in novel highly nonlinear fibres and waveguides

机译:新型高非线性光纤和波导中的全光信号处理

摘要

All-optical signal processing has recently become an attractive research field, a result of nonlinear optical systems making major advances in terms of cost, compactness, energy consumption, integrability and reliability. This technology has impacted several areas ranging from telecommunications and biomolecular sensing to military and quantum communications, and spanning a vast range of frequencies from the near to mid-infrared. This PhD research project was aimed at investigating the features and feasibility of two state-of-the-art all-optical signal processing technologies: highly nonlinear soft glass fibres and silicon-based waveguides.Of the various soft glasses available, lead silicate and tellurite are considered within this thesis. The optical properties of a highly nonlinear lead silicate W-type fibre are studied and the design process of such fibres is explained in detail. A number of telecommunications-based all-optical processing applications are also demonstrated in this fibre technology. Phase sensitive amplification is demonstrated in the W-type fibre and the process is used to regenerate the phase of 40 Gbit/s differential phase shift keying (DPSK) signals.The optical characteristics of a highly nonlinear tellurite fibre are also studied both at 1.55 and 2 µm. Efficient four wave mixing (FMW)-based wavelength conversion of 1.55 µm signals is demonstrated in the fibre and a detailed numerical study into the potential of the fibre in realizing phase-matched mid-infrared (MIR) to near-infrared (NIR) spectral translation is conducted.The second all-optical signal processing platform investigated in this project is silicon germanium (SiGe) waveguides. A detailed account of the linear and nonlinear optical properties of this newly emerging silicon-based technology is reported for the first time and the potential of this platform is highlighted by demonstrating wavelength conversion of 40 Gbaud DPSK and QPSK signals. Broadband spectral translation is also demonstrated in the SiGe waveguides with record FWM bandwidths.
机译:全光信号处理近来已成为一个有吸引力的研究领域,这是非线性光学系统在成本,紧凑性,能耗,可集成性和可靠性方面取得了重大进步的结果。这项技术已经影响了从电信和生物分子传感到军事和量子通信的多个领域,并覆盖了从近红外到中红外的广泛频率范围。该博士研究项目旨在研究两种最先进的全光信号处理技术的特性和可行性:高度非线性的软玻璃纤维和硅基波导。在各种可用的软玻璃中,硅酸铅和亚碲酸盐在本论文中被考虑。研究了高度非线性的硅酸铅W型纤维的光学性质,并详细说明了这种纤维的设计过程。这种光纤技术还展示了许多基于电信的全光处理应用。在W型光纤中演示了相敏放大技术,该过程用于再生40 Gbit / s差分相移键控(DPSK)信号的相位。还研究了高度非线性的亚碲酸盐光纤在1.55和1.55的光学特性。 2微米在光纤中演示了基于高效四波混频(FMW)的1.55 µm信号的波长转换,并对光纤在实现相位匹配的中红外(MIR)到近红外(NIR)光谱方面的潜力进行了详细的数值研究。进行翻译。在该项目中研究的第二个全光信号处理平台是硅锗(SiGe)波导。首次报道了这种新兴的基于硅的技术的线性和非线性光学特性的详细说明,并通过演示40 Gbaud DPSK和QPSK信号的波长转换突出了该平台的潜力。在具有创纪录的FWM带宽的SiGe波导中也展示了宽带频谱转换。

著录项

  • 作者

    Ettabib Mohamed A.;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号