首页> 外文OA文献 >The Jurassic shales of the Wessex area: geology and shale oil and shale gas resource estimation
【2h】

The Jurassic shales of the Wessex area: geology and shale oil and shale gas resource estimation

机译:威塞克斯地区的侏罗纪页岩:地质和页岩油以及页岩气资源估算

摘要

This report on the Jurassic shale oil and gas potential of the Wessex area follows previous assessments of the potential distribution and in-place resource for shale oil and gas onshore UK, including the Carboniferous shales of the Midland Valley of Scotland (Monaghan, 2014), the Carboniferous shales of the Bowland-Hodder (Andrews, 2013), and the Jurassic shales of the Weald (Andrews, 2014); it is intended as an addendum to the Weald Basin report. ududFollowing the methodology used in the assessment of the Weald Basin (Andrews, 2014), a preliminary in-place oil resource calculation has been performed for the main Jurassic shale intervals in the Wessex area. As in the Weald Basin, no significant shale gas resource is recognised in the Jurassic of the Wessex area. The resource assessment is of the hydrocarbons present in shale strata and does not include volumes which have migrated into potential tight conventional or hybrid plays. ududOrganic-rich shales (with total organic carbon (TOC) > 2%) occur regionally in the Kimmeridge Clay, in the lower section of the Oxford Clay and in the Lower Lias. The most significant shales in terms of TOC and S2 are the Kimmeridge Clay and all five shale intervals that comprise the Lower Lias. A distinct difference to the Weald Basin is the organic richness of the Lower Lias; the previous study identified only limited potential in this interval, yet in the Wessex area there are rich source intervals throughout the strata. Shales with an oil saturation index (Jarvie, 2012) of greater than 100 are identified in all of the intervals of the Lower Lias, and therefore can be considered to have excellent source potential. Interpreting the presence of producible oil in the organic-rich shales allows for an in-place resource volume to be calculated with a broad range of probabilities.ududThe determination of oil-in-place was undertaken using the same methodology applied in the Weald study (Andrews, 2014) and is described in detail in Andrews et al. (2014). The total volume of potentially productive shale in the Wessex area was estimated using a 3D geological model built using seismic mapping integrated with well data. This gross volume was then reduced to a net mature organic-rich shale volume using a maximum, pre-uplift burial depth corresponding to a vitrinite reflectance of 0.6% (modelled at 7000 ft/2130 m and 8000 ft/2440 m). A further upwards truncation was then applied at two alternative levels – firstly at a depth of c. 3950 ft (1200 m) and secondly at a depth of c. 5000 ft (1500 m) (as proposed by Charpentier & Cook, 2011) below surface. ududThe volumes of potentially productive shale and average oil yields were used as the input parameters for a statistical calculation (using a Monte Carlo simulation, in which all the parameters were varied within their set distributions over 50,000 iterations) of the in-place oil resource (see Andrews, 2014). This study offers a range of total in-place oil resource estimates for the various Jurassic shales of the Wessex area of 0.2-1.1-2.8 billion bbl (32-149-378 million tonnes) (P90-P50-P10). It should be emphasised that these ‘oil-in-place’ figures refer to an estimate for the entire volume of oil contained in the rock formation, not how much can be recovered. A more refined methodology, like the USGS’s Technically Recoverable Resource “top-down” estimates, requires production data from wells, as yet unavailable for the study area. ududGiven the paucity of data, there is a high degree of uncertainty in these figures. There is likely to be little or no ‘free oil’ for the Oxford Clay, Upper Lias and Middle Lias based on the oil saturation index and although the Kimmeridge Clay does show excellent source potential, it is likely to be immature regionally. The Lower Lias appears to be the only interval with shale oil potential onshore, albeit with relatively small volumes in a localised area largely south of the Purbeck-Isle of Wight Disturbance.ud
机译:这份关于威塞克斯地区侏罗纪页岩油气潜力的报告是根据先前对英国陆上页岩油气潜在分布和就地资源的评估得出的,包括苏格兰米德兰谷的石炭纪页岩(Monaghan,2014年), Bowland-Hodder的石炭纪页岩(Andrews,2013年)和Weald的侏罗纪页岩(Andrews,2014年);它旨在作为Weald Basin报告的附录。遵循韦尔德盆地评估中使用的方法(安德鲁斯,2014年),对韦塞克斯地区主要的侏罗纪页岩层段进行了初步的就地石油资源计算。与韦尔德盆地一样,韦塞克斯地区的侏罗纪也没有发现重要的页岩气资源。资源评估是针对页岩地层中存在的碳氢化合物的,不包括已迁移到潜在的致密常规或混合油气田中的体积。富含有机物的页岩(总有机碳(TOC)> 2%)分布在金梅里奇粘土,牛津粘土下部和下利亚斯地区。就TOC和S2而言,最重要的页岩是金梅里奇粘土(Kimmeridge Clay)以及构成下利亚地区的所有五个页岩层段。下维尔斯的有机丰富度与韦尔德盆地的显着不同。先前的研究仅确定了该层段的潜力有限,但在韦塞克斯地区,整个地层都有丰富的源层段。在下利亚地区的所有层段中均发现了油饱和指数大于100的页岩(贾维,2012年),因此可以认为该页岩具有极好的油源潜力。解释富含有机物的页岩中可生产油的存在,就可以计算出具有广泛概率的就地资源量。 ud ud Weald的研究(Andrews,2014年),并在Andrews等人的文章中有详细描述。 (2014)。威塞克斯地区潜在生产性页岩的总体积是使用3D地质模型估算的,该模型是使用地震测绘与井数据集成而成的。然后使用对应于0.6%的镜质体反射率(在7000 ft / 2130 m和8000 ft / 2440 m建模)的最大的隆升前最大埋藏深度,将此总体积减少为富含有机物的成熟净净体积。然后在两个替代级别上应用进一步的向上截断–首先,深度为c。 3950英尺(1200 m),其次是深度c。地表以下5000英尺(1500 m)(由Charpentier&Cook建议,2011年)。 ud ud将潜在生产性页岩的体积和平均油产量用作就地的统计计算(使用蒙特卡洛模拟,其中所有参数在其设置分布范围内重复50,000次迭代)的输入参数石油资源(请参阅安德鲁斯,2014年)。这项研究为威塞克斯地区的各种侏罗纪页岩提供了0.2-1.1-28亿桶(32-149-378百万吨)(P90-P50-P10)的一系列就地石油资源总估算。应该强调的是,这些“原位石油”数字是对岩层中所含石油总量的估计,而不是可以回收多少。一种更完善的方法,例如USGS的“技术上可采资源”的“自上而下”估计,需要来自井的生产数据,但该研究区域尚无此数据。 ud ud由于缺乏数据,因此这些数字存在很大的不确定性。基于含油饱和度指数,牛津粘土,上利亚斯和中利亚的“游离油”可能很少或没有,尽管金梅里奇粘土确实显示出极好的油源潜力,但在地区上可能不成熟。下利亚斯地区似乎是唯一具有陆上页岩油潜力的区间,尽管在珀贝克-怀特岛南侧的局部地区体积较小。

著录项

  • 作者

    Greenhalgh E.;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号