首页> 中国专利> 预防线路重合闸期间非故障相母差保护误动的方法

预防线路重合闸期间非故障相母差保护误动的方法

摘要

本发明涉及一种防范线路重合闸期间非故障相母差保护误动的方法,至少包括以下措施中的一项:(1)优化二次系统指标将母线用的TA更换为5P20,确保8倍的额定电流值TA远离10%误差曲线的边缘;(2)差动保护设置高低定值动作区(3)增加谐波制动判据在逻辑中采取抗饱和的措施,增加谐波制动判据,谐波制动系数取值<0.1;(4)增加工频变化量综合判据母线发生区外故障时,以工频变化量差动逻辑代替工频差动逻辑。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2016-01-20

    授权

    授权

  • 2013-10-30

    实质审查的生效 IPC(主分类):H02H7/22 申请日:20130719

    实质审查的生效

  • 2013-09-25

    公开

    公开

说明书

技术领域

本发明涉及一种预防线路重合闸期间非故障相母差保护误动的方法,属于电力系统继电 保护技术领域。

背景技术

近几年来110kV东城变电站、青岛发电厂等先后出现过几次线路发生单相接地短路,当 线路断路器重合到永久性故障时母线差动或线路差动保护动作、断路器跳闸导致设备大面积 停电的重大事故,故障的发生不仅切除了有关设备,也影响了电网的稳定运行。

例如,110kV东城变电站线路发生单相接地短路,当线路断路器重合到永久性故障时, 线路的二次电流波形严重畸变,由此导致母线差动保护误动作,造成了变电站II母线停电的 重大事故。

线路发生故障断路器跳闸后,采取重合闸手段以弥补由于非永久性故障造成的开关跳闸, 线路停电造成的损失。但在线路重合闸时,对于非故障线路、非故障相母差保护以及线路差 动保护出现动作的问题影响了重合闸应有的效果,同时也干扰了故障的分析与处理。

线路断路器重合到永久性故障时母线差动或线路差动保护动作、断路器跳闸问题非常严 重,之前的资料中虽有相关报道,但其故障的类型、解决与分析的问题思路相差甚远。类似 于上述实例所讲的运行变电站内出现的线路发生单相接地短路,当线路断路器重合到永久性 故障时,母线差动保护误动作的问题长期以来一直没有找到故障的原因以及处理方法。

发明内容

本发明的目的就是为解决上述问题,提供一种预防线路重合闸期间非故障相母差保护误 动的方法,它有效解决了线路重合闸期间非故障相母差保护误动作的问题。

为实现上述目的,本发明采用如下技术方案:

一种预防线路重合闸期间非故障相母差保护误动的方法,至少包括以下措施中的一项:

(1)优化二次系统指标

(2)差动保护设置高低定值动作区

(3)增加谐波制动判据

在逻辑中采取抗饱和的措施,增加谐波制动判据,谐波制动系数取值<0.1;

(4)增加工频变化量综合判据

母线发生区外故障时,以工频变化量差动逻辑代替工频差动逻辑。

所述第(1)项中,优化二次系统指标,将母线用的TA更换为5P20,确保8倍的额定电 流值TA远离10%误差曲线的边缘。

所述第(2)项中,差动保护设置低定值按Icdzd=0.4In整定,In是二次额定电流,带0.1s 延时动作出口;高定值按Icdzd=1.5In,不带延时0s动作出口。

本发明的有益效果是:以上4项措施只要能够共同发挥作用,就能够解决线路重合闸期 间非故障相母差保护误动作的问题。由此有效地避免了保护误动、开关误跳、信号误发、机 组误停的一系列问题;从而避免了设备大面积停电对电网造成的冲击影响。

附图说明

图1,变电站系统结构与故障点的位置

图2,TA二次系统原理接线图

图3,线路故障录波图

图4,母线故障录波图

图5,剩磁对TA特性影响的电流波形图

图6,比例差动元件动作特性曲线

图7,TA等值电路

图8,故障线路4母线保护TA实测的10%误差曲线

图9,II母差保护的工作框图

图10,220kV青南线故障时的录波图。

具体实施方式

实施例:(以110kV东城变电站为例)

本发明分析了解决线路重合闸期间非故障相母差保护误动的实例,展示了在寻找故障的 检测方法、在确定非故障相母差保护误动的原因、以及在建立合理的指标体系方面所做的工 作。

110kV东城变电站线路8.4km处发生单相接地短路,当线路断路器重合到永久性故障时, 线路的二次电流波形严重畸变,由此导致II差动保护误动作,造成了变电站II母线停电的 重大事故。故障的发生不仅切除了设备、中断了正常的发供电工作,同时也给局部电网的安 全稳定运行造成了非常严重的影响。

故障发生后在现场进行了大量的检查与试验工作,对TA二次回路的绝缘电阻进行了测 试,排除了二次回路两点接地的因素;对伏安特性、二次阻抗进行了测试,结果表明是二次阻抗高造成了短路电流的饱和;对电流的波形进行了分析,并采用大电流试验与模拟剩磁效 应的方法证实,电流波形畸变的原因在于剩磁的影响,剩磁使TA处于暂态饱和状态、暂态饱 和导致传变特性变坏进而造成二次电流的畸变。TA采取抗饱和措施;差动保护采取了设置高、 低定值动作区;在逻辑中增加谐波制动环节等措施后问题得到彻底解决。

下面对东城变电站线路重合到永久性故障时母线差动误保护动作的动行为进行分析。

一、故障现象

2010年8月3日,18:57:25,110kV东城变电站#4线路8.4km处发生接地故障,线 路保护动作跳闸。开关经过整定的延时后重合到永久性故障,线路保护再次动作跳闸,与此 同时,II母线保护B相动作,跳开该母线联接的所有设备,系统结构与故障点的位置见图1。 当时的故障现象有如下疑点。

(1)大差保护的不平衡电流与II母线保护一致,但大差保护为何没有动作;

(2)线路发生接地故障时II母线保护B相动作,是II保护误动呢,还是II母线存在故 障而正确动作;

(3)II母线保护A相差流远大于B、C相,但是A相保护没有动作,B相动作了;

(4)线路第一次发生接地故障时,II母线保护没有动作,重合后却动作了;

(5)线路发生接地故障时,故障电流饱和严重的原因在何处?

二、检查过程

围绕故障现象中的疑点,对#4线路TA等二次回路进行了全面检查。TA二次回路接线以母 线保护为例,简图见图2。

1、绝缘电阻测试

回路 测量值(MΩ) 回路 测量值(MΩ) 线路保护421 80 母差保护310 30 421AB之间 300 31OAB之间 400 421BC之间 500 31OBC之间 500 421CA之间 400 31OCA之间 200 421AN之间 2000 31OAN之间 1500 421BN之间 1500 31OBN之间 2000 421CN之间 1000 31OCN之间 2000

所检测的绝缘电阻合格,可以确定TA二次不存在两点接地的现象,也就是说母线差动 保护的误动作与TA二次接地的问题无关。

2、TA变比试验

由图1可知,故障线路TA的变比为600/5,因此变比结果正确。

3、TA极性试验

试验结果表明,TA的输出端均为正极性,因此极性正确。

4、直流电阻测试

所测试的直流电阻结果正确无误。

5、TA二次负载交流阻抗测试

相别 A0 B0 C0 421阻抗(Ω) 4.2 4.1 4.1 310阻抗(Ω) 4.1 4.1 4.1

6、伏安特性试验

(1)421电流回路(端子箱TA侧)

(2)310电流回路(端子箱TA侧)

所测量的数据结果正确。

7、变电站110kV母线保护电流相量测试

所测量的母线保护电流相量结果正确。

8、故障录波检查

线路与母线保护故障录波见图3、图4,

9、关于剩磁影响TA特性的试验

为了验证剩磁对TA特性影响,对两只TA中的一只,二次线圈120匝通入5A的电流,折 合励磁600安匝,然后两只TA同时通入电流20Ie,则两者的差流达6Ie以上,此值足以导 致保护的动作。试验时的录波图形见图5。

三、母线保护原理简介

母线差动保护由分相式比率差动元件构成,TA极性要求支路TA同名端在母线侧,母联 TA同名端在I段母侧。母线大差是指除母联开关和分段开关外所有支路电流所构成的差动回 路,I(II)段母线的小差是指该段母线上所连接的所有支路电流所构成的差动回路。母线大 差比率差动用与判别母线区内和区外故障,小差比率差动用于选择故障母线。比率差动元件 动作判据为:

Icd=|Σj=1mIj|;|Σj=1mIj|>Icdzd;|Σj=1mIj|>KΣj=1m|Ij|

其中:Icd—差动起动电流;m—连接支路数;K为比率制动系数;Ij为第j个连接元件的电流; Icdzd为差动电流起动定值。其动作特性曲线如图6所示。

四、确定TA10%误差曲线

采用TA的励磁特性曲线法可得到10%的误差曲线,做法如下:

(1)TA的励磁阻抗特性曲线

TA的等值电路见图7。图7中,Z1为一次绕组阻抗,Z2'为二次绕组阻抗,ZLC为励磁阻 抗,ILC为励磁电流。将TA的一次侧开路,二次电流、电压之间的关系为:

U·2=I·LC(ZLC+Z2)

上式可以写成

ZLC+Z2U·2/I·LC

相对ZLC来说,Z2′可以忽略不计,所以TA二次的伏安特性近似为励磁阻抗特性,即 ZLC≈U2/ILC,而伏安特性又极易从试验中获得。

(2)做10%误差曲线

用励磁特性曲线的纵坐标乘以0.1作为10%误差曲线的横坐标,即二次允许阻抗Zr

Zr=0.1ZLC≈0.1U2/ILC

用励磁特性曲线的横坐标乘以2作为10%误差曲线的纵坐标,即一次电流倍数m10。

m10=2ILC

(3)实测的10%误差曲线(图8)

对TA的二次伏安特性进行了实测,相关数据见表1。因三相数据基本一致,故只列一相。

母线保护B相TA特性数据表

I(A) 0.1 0.2 0.5 1.0 2.0 3.0 4.0 5.0 10.0 20.0 U(V) 163 171 178 185 198 207 223 229 239 247 Zr(Ω) 163 85 36 18 10 6.9 5.6 4.5 2.3 1.2 m10 0.2 0.4 1.0 2.0 4.0 6.0 8.0 10.0 20.0 40.0

五、原因分析

针对故障现象中的疑点分析如下:

1、II母线保护动作大差保护没有动作是逻辑配合的结果

大差的不平衡电流与II母线保护一致,但大差保护没有动作,II母线保护动作的原因在 于,故障线路重合后,大差保护的不平衡电流与II母线保护一致,但是根据逻辑配合,达到 定值后II母线保护动作在先,大差保护动作在后,故障消失后大差保护返回。

2、II母线保护的动作属于误动作

线路发生接地故障时,是II母线保护误动呢,还是II母线存在故障正确动作?由故障录 波图可知,故障线路第一次切除后母线电压正常,该线路重合到故障后母线电压下降。因此 只有线路存在故障,母线运行正常。由此可见II母线保护的动作属于误动作。

3、母线保护的误动作与电流波形的畸变有关

线路第一次发生接地故障时,为何II母线保护没有动作,重合后却动作了?线路第一次 发生接地故障时,B、C相对故障相的潜供电流也存在,但是差电流较轻,保护没有动作。线 路重合于永久故障后,故障电流的直流分量提高,不平衡电流明显增加,差电流达到定值的 持续时间长,因此重合后B相II母差动作跳闸。

4、TA二次电流波形的畸变与剩磁有关

运行中,在空投变压器、事故跳闸以及电容器投切等操作时,通过电流互感器的电流中 存在直流分量的机会很多,电流的直流分量必然在电流互感器的在铁心中产生剩磁,剩磁在 运行条件下难以消除。由于剩磁的影响会使电流互感器的传变特性变坏;由于传变特性变坏 导致电流互感器出现暂态饱和;由于暂态饱和与直流分量的影响导致TA二次电流波形的畸 变。

对于母线保护,如果TA剩磁的初始条件不一致则电流的暂态状况也出现差别,从而导致 差流的出现,当差流达到一定的程度则会使保护误动作。

5、试验证明了剩磁对TA二次电流的波形影响

在线路故障的起始阶段714开关TA二次电流基本上是标准的正弦量,而线路断路器重合 到永久性故障时,TA二次电流的波形严重畸变,出现了同一型号的TA在不同的时段表现出 了不同特性的问题,其区别在于剩磁的影响。

为了深入理解剩磁对TA电流的影响,完成了“关于剩磁影响TA特性的试验”,结果表明, TA存在剩磁的情况下,二次电流偏离横坐标可达1/2以上。但是,线路故障时保护的电流录 波与试验波形图5差别较大,原因在于试验不能完全模拟当时的故障电流,试验只能说明剩 磁的影响会使电流互感器出现暂态饱和现象,导致TA电流波形的畸变。

6、对A相与B相保护之间动作行为差别的理解

II母线A相差流远大于B、C相,但是为什么A相保护没有动作,B相却动作?(1)B

相保护动作的原因是故障电流的暂态分量所致

根据故障录波图可知,A相接地故障时B、C相对地则存在电流,A相接地故障电流40A, B、C相对地电流10A左右。B、C相电流是对故障相提供的潜供电流,不是二次干扰等其他 因素造成的。

A相差电流虽然较大,但是每个周波有1/3以上的间断时间,此时保护返回,因此保护 没有动作出口。A相差电流主要是饱和的影响造成的。

B相保护动作的原因,在于其故障电流的波形暂态分量明显,差电流达到定值的持续时 间长,实际上Icd>Icdzd=0.4In持续时间10ms,从而起动保护并导致出口跳闸。

C相相对B相较轻,而且不平衡电流较小,保护不动也在情理之中。

(2)线路发生接地故障时A相电流饱和与10%误差无关

线路发生接地故障时A相TA二次电流达40A,相当于8倍的额定电流值,此时TA严重 饱和是不应该的,可能存在以下问题。

1)设备选型不合适或制造质量存在问题;

2)二次回路阻抗超出标准,导致10%误差不满足要求;

3)存在剩磁的影响,造成所谓的暂态饱和。

根据对试验结果分析得出的结论是,故障开始时的短路电流的饱和与剩磁无关,结合TA 实测的10%误差曲线可知,8倍的额定电流值TA接近10%误差的边缘,但是10%误差尚未超 标,因此A相电流饱和与10%误差无关,是TA特性问题所致;重合闸期间A相电流的严重 饱和不仅与TA特性问题有关,还与剩磁有关,与10%误差无关。

值得注意的是,B相保护误动作与A相电流饱和之间差别很大,前曾述及B相保护误动 作与剩磁的影响密切相关。

六、防范措施

根据上述分析,结合现场的情况采取如下措施。

1、提升TA规格,优化二次系统指标

将母线用的TA更换为5P20,确保8倍的额定电流值TA远离10%误差曲线的边缘;

2、差动保护设置高低定值动作区

差动保护设置低定值动作区,按Icdzd=0.4In整定,In是二次额定电流,带0.1s延时动作 出口;高定值动作区按Icdzd=1.5In整定,不带延时0s动作出口。

3、增加谐波制动据

在逻辑中采取抗饱和的措施,增加谐波制动环节,谐波制动系数取值<0.1。由谐波制动 原理构成的TA饱和检测元件。其原理利用了TA饱和时差流波形畸变和每周波存在线性传变 区等特点,根据差流中谐波分量的波形特征检测TA是否发生饱和。该原理实现的TA饱和检 测元件具有很强抗TA饱和能力。母差保护的工作框图见图9。

图9中,Icd—差动起动电流;CD—大差比率差动元件;CDII—II母线比率差动元件;

SW—母差保护控制字;YB—母差保护投退压板;UII—II母线电压闭锁。

4、增加工频变化量综合判据

母线发生区外故障时,由于故障开始TA尚未饱和,工频变化量差动元件、工频变化量阻 抗滞后工频变化量电压元件,利用三者的时序关系得到自适应阻抗加权判据,此判据利用区 外故障时TA饱和时序差流不同于区内故障的特点,有很强的抗饱和能力。

采取了上述措施后,问题得到彻底解决。附件:图10,220kV青南线故障时的录波。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号