首页> 中国专利> 与金属基涂层稳定结合的陶瓷基体材料及其制品

与金属基涂层稳定结合的陶瓷基体材料及其制品

摘要

本发明提出了一种与金属基涂层稳定结合的陶瓷基体材料,主要由锂辉石、透锂长石、锂霞石、石英、高岭土、氧化锌、氧化镁以及氧化钡组成。该陶瓷材料在300℃范围内的膨胀系数稳定,在该温度范围内反复加热冷却不易爆裂,可适用于电磁加热设备。本发明还公开该陶瓷材料制成的陶瓷器皿。

著录项

  • 公开/公告号CN103739278A

    专利类型发明专利

  • 公开/公告日2014-04-23

    原文格式PDF

  • 申请/专利权人 曹小松;

    申请/专利号CN201410010851.4

  • 发明设计人 曹小松;

    申请日2014-01-10

  • 分类号C04B35/10;C04B41/90;

  • 代理机构

  • 代理人

  • 地址 332600 江西省九江市都昌县大港镇漂水村曹佰肆

  • 入库时间 2024-02-19 22:36:00

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-12-28

    未缴年费专利权终止 IPC(主分类):C04B35/10 授权公告日:20150304 终止日期:20180110 申请日:20140110

    专利权的终止

  • 2015-03-04

    授权

    授权

  • 2015-02-04

    专利申请权的转移 IPC(主分类):C04B35/10 变更前: 变更后: 登记生效日:20150114 申请日:20140110

    专利申请权、专利权的转移

  • 2014-11-26

    著录事项变更 IPC(主分类):C04B35/10 变更前: 变更后: 申请日:20140110

    著录事项变更

  • 2014-05-21

    实质审查的生效 IPC(主分类):C04B35/10 申请日:20140110

    实质审查的生效

  • 2014-04-23

    公开

    公开

查看全部

说明书

技术领域

本发明涉及可与以银铁为主的金属基涂层稳定结合的陶瓷基体,其热膨胀系数与涂层接近,热稳定性好。

背景技术

铁银混合物具有良好的导热导磁能力,可以用于电磁加热设备。但是其与陶瓷材料的热膨胀系数差异较大,多次急冷急热,底部涂层脱落,甚至炸裂。

有发明人提供了中温耐热陶瓷及其制备方法,专利号ZL200510035605.5。该案公开的耐热陶瓷的热膨胀系数为2~3×10-6/℃。其包括氧化硅58%~75%、氧化铝18%~35%、氧化锂4.5%~7.5%以及微量的碳酸锂和增塑剂。该案认为这种比例下的陶瓷耐800℃~20℃间的急冷。

201210539801.6公开一种高耐热陶瓷及其制备方法,其由如下重量含量的组分制备而成:透锂长石44~46份,石英12~13份,高岭土14~15份,滑石6~7份,粘土22~28份,氧化锌3~4份,氧化钡3~4份,废瓷渣5~6份,氧化铌0.6~1.2份,分散剂0.25~0.4份,聚丙烯酰胺0.4~0.5份。该案也能维持800℃~20℃间的热交换。此外201010271915.8的厨具耐热陶瓷也公开了一种800℃左右的耐热陶瓷配方。

在电磁加热设备上使用陶瓷器皿时,如果带有涂层,陶瓷本身的温度一般保持在50至300℃,一般不会超过400℃。

200810107171.9公开一种耐热陶瓷材料,该陶瓷除了含有常规的氧化硅、氧化铝、氧化锂、氧化钙、氧化钾以及氧化钠之外,还含有氧化铁、氧化镁以及氧化钛。该案的氧化锂较低,具有400℃的耐热性。

201110147816.3的高锂质耐热陶瓷材料,主要由透锂长石、华林土、高岭土和废瓷粉为原材料组合烧结而成,其特征在于各原料的重量份为:透锂长石40~55份;贵州高岭土12~20份;华林土20~30份;废瓷粉5~10份;宜春高岭土6~8份;中厦土6~8份;樟州黑土2~4份;滑石粉2~4份;氧化铝2~4份;石英粉3~6份,该耐热瓷煲的热稳定性能可达到在520℃~20℃急冷不裂。

用于电磁加热设备的陶瓷器皿除了考虑热稳定外,与金属的均匀热膨胀是值得关注的。该陶瓷器皿的涂层一般含有金属,尤其含有铁银。铁、铜、银等金属的热膨胀系数一般维持在10~20×10-6/℃左右,将其涂覆在热膨胀系数小于3~8×10-6/℃左右的陶瓷件上,反复热交换后,涂层容易脱落。

陶瓷以金属氧化物为主,其膨胀系数与氧化物的比例相关。201110060944.4公开了氧化镁、氧化硅、氧化钙的比例关系对膨胀系数的影响。但是由于玻璃与陶瓷的制备工艺迥异,该比例不一定适合陶瓷材料。

陶瓷与金属的均衡热膨胀只存在与部分技术领域,直接混合陶瓷件和金属,需要予以排除。201010594254.2涉及一种可磁化陶瓷的制备方法,它是在非磁性陶瓷粉料中掺入可磁化物质,制备可磁化的陶瓷制品。该案说明,可磁化物质在可磁化陶瓷制品中的含量(5~80)wt%,该比例实际上囊括了所有的磁性陶瓷制品,所该范围的所有实施例中,陶瓷材料与可磁化物质均具有良好的结合性是有待考证的。

因此,现有技术有进一步改进的必要。

发明内容

本发明要解决的技术问题是提供一种陶瓷基体材料,其与金属的热膨胀系数接近,在中低温范围(20℃~300℃)内热稳定。

一种与金属基涂层稳定结合的陶瓷基体,其特征在于,按占陶瓷基体重量百分比计,氧化锌1%~3%、碳酸锂0.1~2%、氧化镁7%~8%、氧化钡3%~5%,锂辉石提供4%~5%的氧化锂,锂辉石、石英以及高岭土共提供25%~32%的氧化铝、含量是氧化镁4.68倍的氧化硅、含量是氧化镁1.2倍的氧化钙,硼、钾、钠合计小于3%。

优选的,这种陶瓷基体由氧化铝30%~32%、氧化锂4~4.5%、氧化硅33%~34%、氧化钙8%~9%、氧化锌1%、氧化镁7%~7.5%、氧化钡5%、碳酸锂2%、分散剂0.01~0.5%、增塑剂1%,余量的氧化硼、氧化钾和氧化钠组成。

优选的,氧化硼的含量为0.1%~2%。

优选的,氧化镁为7.21%。氧化镁的含量与氧化硅、氧化钙成比例,控制氧化镁的含量可以同时控制氧化硅和氧化钙的含量,以便控制陶瓷基体的微观组成。

一种与金属基涂层稳定结合的陶瓷基体的制备方法,其特征在于包括以下步骤:

按陶瓷基体的配方配置锂辉石、透锂长石、石英以及高岭土的混合原料,选择性絮凝,控制硼、钾、钠合计小于3%,沉淀后制成胚料;

按陶瓷基体的配方在胚料中加入氧化锌、氧化镁、氧化钡以及碳酸锂,制成陶瓷胚件;

陶瓷胚件置于800℃~900℃中预烧2小时,陶瓷胚件置于1300℃~1500℃中预烧8小时,在2小时内逐渐降低至常温,制成陶瓷基体。

一种适用于电磁加热设备的陶瓷器皿,其特征在于由陶瓷基体和复合涂层组成,所述陶瓷基体由所述陶瓷材料制成,所述复合涂层由基层、发热层以及面层组成。

按重量百分比计,所述基层由氧化铝12%~18%、氧化钙7%~8%、氧化镁7%~8%、氧化钡4%~5%、氧化铁14%~17%、氧化硼12%~14%、氧化钾2%~5%、氧化钠0.1%~4%以及余量的氧化硅组成,所述发热层由氧化铝12%~18%、氧化镁7%~8%、铁与镍共16%~20%、银45%~46%、氧化硼5%~6%、氧化钾2%~5%、氧化钠0.1%~2%组成,所述面层由氧化铝21%~26%、氧化硅28%~40%、氧化钙7%~8%、氧化镁7%~9%、氧化铁12%~13%、氧化锌2%~8%、氧化钾2%~5%、氧化钠0.1%~4%组成。

一种适用于电磁加热设备的陶瓷器皿的制备方法,其特征在于包括以下步骤:

按陶瓷基体的配方配置锂辉石、透锂长石、石英以及高岭土的混合原料,选择性絮凝,控制硼、钾、钠合计小于3%,沉淀后制成胚料;

按陶瓷基体的配方在胚料中加入氧化锌、氧化镁、氧化钡以及碳酸锂,制成陶瓷胚件;

陶瓷胚件置于800℃~900℃中预烧2小时,陶瓷胚件置于1300℃~1500℃中预烧8小时,在2小时内逐渐降低至常温,制成陶瓷基体;

按要求配置基层原料,熔化后析晶,研磨,制成基层涂料,将该基层涂料涂覆于烧结的陶瓷基体;

按要求配置发热层原料,取氧化铝、氧化锌以及助熔剂熔化后析晶,混入铁基混合物和银后研磨,制成发热层涂料,将该发热层涂料涂覆于所述基层;

按要求配置面层原料,熔化后析晶,研磨,制成面层涂料,将该基层涂料涂覆于所述发热层;

烘干,再烧结。

具体实施方式

现有技术综述

有发明人提供了中温耐热陶瓷及其制备方法,专利号ZL200510035605.5。该案公开的耐热陶瓷的热膨胀系数为2~3×10-6/℃。其包括氧化硅58%~75%、氧化铝18%~35%、氧化锂4.5%~7.5%以及微量的碳酸锂和增塑剂。该案认为这种比例下的陶瓷耐800℃~20℃间的急冷。

201210539801.6公开一种高耐热陶瓷及其制备方法,其由如下重量含量的组分制备而成:透锂长石44~46份,石英12~13份,高岭土14~15份,滑石6~7份,粘土22~28份,氧化锌3~4份,氧化钡3~4份,废瓷渣5~6份,氧化铌0.6~1.2份,分散剂0.25~0.4份,聚丙烯酰胺0.4~0.5份。该案也能维持800℃~20℃间的热交换。此外201010271915.8的厨具耐热陶瓷也公开了一种800℃左右的耐热陶瓷配方。

在电磁加热设备上使用陶瓷器皿时,如果带有涂层,陶瓷本身的温度一般保持在50至300℃,一般不会超过400℃。

200810107171.9公开一种耐热陶瓷材料,该陶瓷除了含有常规的氧化硅、氧化铝、氧化锂、氧化钙、氧化钾以及氧化钠之外,还含有氧化铁、氧化镁以及氧化钛。该案的氧化锂较低,具有400℃的耐热性。

201110147816.3的高锂质耐热陶瓷材料,主要由透锂长石、华林土、高岭土和废瓷粉为原材料组合烧结而成,其特征在于各原料的重量份为:透锂长石40~55份;贵州高岭土12~20份;华林土20~30份;废瓷粉5~10份;宜春高岭土6~8份;中厦土6~8份;樟州黑土2~4份;滑石粉2~4份;氧化铝2~4份;石英粉3~6份,该耐热瓷煲的热稳定性能可达到在520℃~20℃急冷不裂。

用于电磁加热设备的陶瓷器皿除了考虑热稳定外,与金属的均匀热膨胀是值得关注的。该陶瓷器皿的涂层一般含有金属,尤其含有铁银。铁、铜、银等金属的热膨胀系数一般维持在10~20×10-6/℃左右,将其涂覆在热膨胀系数小于3~8×10-6/℃左右的陶瓷件上,反复热交换后,涂层容易脱落。

陶瓷以金属氧化物为主,其膨胀系数与氧化物的比例相关。201110060944.4公开了氧化镁、氧化硅、氧化钙的比例关系对膨胀系数的影响。但是由于玻璃与陶瓷的制备工艺迥异,该比例不一定适合陶瓷材料。

陶瓷与金属的均衡热膨胀只存在与部分技术领域,直接混合陶瓷件和金属,需要予以排除。201010594254.2涉及一种可磁化陶瓷的制备方法,它是在非磁性陶瓷粉料中掺入可磁化物质,制备可磁化的陶瓷制品。该案说明,可磁化物质在可磁化陶瓷制品中的含量(5~80)wt%,该比例实际上囊括了所有的磁性陶瓷制品,所该范围的所有实施例中,陶瓷材料与可磁化物质均具有良好的结合性是有待考证的。

200910115840.1公开了一种金属釉层,该金属釉层由铝锂银钛的合金组成,除了金属与陶瓷材料的结合性外,金属作为釉层,耐磨性是值得怀疑的。

201010172342.3公开了电磁灶用陶瓷锅的制造方法,该电磁灶用陶瓷锅包括锅体和铁膜层,所述锅体包括0.1-0.6 份氧化锂、2-5 份氧化铝、3-4.5 份氧化硅和0.3-0.5 份氧化镁。该锅体具有热稳定性好、遇急火和高温均不易炸裂等优点。该案说明了用氢还原法制备铁膜层的方法,但是铁膜层用于电磁灶是已知的。

201010219058.7公开一种电磁感应陶瓷炊具,包括陶瓷炊具本体、金属层、保护层。金属层可以是镍铁银的一种,保护层可以是二氧化硅的釉层。该案认为通过熔融方式涂覆金属层,可以增强金属层与陶瓷本体的结合性,二氧化硅可以降低金属层的氧化和磨损。除此之外,200310103236.X、 200810073959.2、200710061691.6以及201010160131.8也提出了类似的方案,只是金属层的组成和粘接方式有略微差别。实际上,金属单质或者金属合金与现有的陶瓷主成分氧化铝、氧化锂的热膨胀系数差别较大,易脱落或爆裂。

200710100759.7公开了一种陶瓷烹调炊具,该炊具包括陶瓷本体和复合涂层,而复合涂层又由辐射涂层、发热涂层以及反射涂层组成。其中辐射涂层以过渡金属氧化物为主原料,发热涂层以金属银铁钴镍为主原料,反射层以六钛酸钾晶须为主原料。每一涂层内均附加与本体原料为主的溶剂,该溶剂有助于涂层材料为结合,同时让整体膨胀系数趋于一致。该案中,复合涂覆层及其溶剂成分可以作为本案的参考,虽然其多层涂覆的目的是提高热效率。

除了涂覆金属层外,也有在陶瓷材料中直接添加铁磁质材料的技术方案。201010594254.2涉及一种可磁化陶瓷的制备方法,它是在非磁性陶瓷粉料中掺入可磁化物质,制备可磁化的陶瓷制品。该案说明,可磁化物质在可磁化陶瓷制品中的含量(5~80)wt%,该比例实际上囊括了所有的磁性陶瓷制品,所该范围的所有实施例中,陶瓷材料与可磁化物质均具有良好的结合性是有待考证的。该可以适用的可磁化物质种类繁多,涉及铁氧化物、铁钴镍锰合金以及相关矿石。根据其实施例,矿石中含有锌锶钡等元素,但是锌锶钡在陶瓷中的作用没有公开。

201210313966.1公开了铁素体陶瓷组合物,该组合物以铜铁锰镍锌及其氧化物为主原料。该陶瓷组合物主要用于制备电子元器件,其对导电率与电阻率的考量与电磁加热设备的陶瓷件不同。但是该案指出金属与其氧化物在电热状态下的结合稳定性。

本实施方式重点涉及本发明的陶瓷基体和陶瓷器皿的相关内容,本申请未尽事宜,可参见其他内容。现有技术已做详尽公开的内容,本申请不赘述。对现有技术的理解,可以参照背景技术部分已引证的专利及专利申请。

本发明的陶瓷基体,由锂辉石、锂霞石、锂长石、石英、高岭土、氧化锌、氧化镁、氧化钡、碳酸锂、分散剂以及增塑剂组成。按占陶瓷本体重量百分比计,氧化锌1%~3%、氧化镁7%~8%、氧化钡3%~5%、碳酸锂0.1~2%、分散剂0.01~0.5%、增塑剂1%。所述锂辉石提供4%~5%的氧化锂,所述锂辉石、石英以及高岭土共提供22%~25%的氧化铝、含量是氧化镁4.68倍的氧化硅、含量是氧化镁1.2倍的氧化钙,硼、钾、钠合计小于3%。

本发明的主要成分取材于锂矿石、高岭土以及石英等,矿石中各组分含量无法准确估计。为了更为精确地控制陶瓷基体的热膨胀系数,该陶瓷基体由氧化铝22%~23%、氧化锂4~4.5%、氧化硅33%~34%、氧化钙8%~9%、氧化锌1%、氧化镁7%~7.5%、氧化钡5%、碳酸锂2%、分散剂0.01~0.5%、增塑剂1%,余量的氧化硼、氧化钾和氧化钠组成。所述增塑剂为羧甲基纤维素,所述分散剂为水玻璃、六偏磷酸钠、腐植酸钠中的一种或几种。

陶瓷基体的烧结方式与现有的耐热陶瓷相似,先预热、再烧结、最后降温取出。烧结温度以1300℃至1500℃为宜。

复合涂层由基层、发热层以及面层组成,基层的颗粒大,其主要以普通耐热玻璃为主成分、添加氧化镁等高膨胀系数成分和铁氧化物。基层的厚度较大,其可以连接陶瓷基体和金属。发热层中的主要发热成分是铁镍银,其他成分主要用于降低膨胀和助熔,发热层材料的线膨胀系数不高于11×10-6/℃,最好为8×10-6/℃。面层除了要考虑膨胀和抗热震性外,耐磨和抗裂也是要考虑的。

本发明的这种陶瓷基体的热膨胀系数为6~8×10-6/℃,与金属和金属氧化物的混合物涂层的热膨胀系数接近7~11×10-6/℃,基体材料与涂层热膨胀系数接近。在中低温范围(20℃~300℃)内,热膨胀约为1.5 ×10-3

为了更为清楚的了解本发明,以下提供多个实施例。

实施例一

取透锂长石、锂辉石、锂霞石、石英以及高岭土,研磨至250目,加水后添加聚丙烯酰胺,反复选择性絮凝,控制氧化硼约2%、氧化钠与氧化钾合计约4%,其他杂质合计约1.5%,沉淀后制成胚料。胚料中大约含有,氧化铝32%、氧化锂4%、氧化硅32.76%、氧化钙8.4%。取氧化锌1%、氧化镁7%、氧化钡5%、碳酸锂2%、水玻璃0.3%、羧甲基纤维素1%,加入到胚料中,加水制成基体,将基体制成器皿状,该基体至少具有平整的底面。陶瓷胚件置于800℃中预烧2小时,陶瓷胚件置于1310℃中预烧8小时,在2小时内逐渐降低至常温,制成陶瓷基体。

按要求配置基层原料,所述基层由氧化铝12%、氧化钙8%、氧化镁11%、氧化钡5%、氧化铁17%、氧化硼14%、氧化钾2%、氧化钠1%以及氧化硅30%组成。各组分熔化后,1200℃恒温析晶。粉碎、研磨后的颗粒度80至120目,制成基层涂料。加入适量调墨油制成浆料,采用丝网印刷工艺将该基层涂料涂覆于烧结的陶瓷基体,印刷厚度2.7mm至5mm。

按要求配置发热层原料,所述发热层由氧化铝18%、氧化镁7%、铁与镍共20%、银45%、氧化硼5%、氧化钾4%、氧化钠1%组成。取氧化铝、氧化镁以及助熔剂(氧化硼、氧化钾以及氧化钠)熔化后析晶,混入铁基混合物和银后研磨,制成发热层涂料,加入适量调墨油制成浆料,采用丝网印刷工艺将该发热层涂料涂覆于所述基层。要求研磨后的颗粒度200至280目,印刷厚度1.5mm至3mm。

按要求配置面层原料,所述面层由氧化铝26%、氧化硅40%、氧化钙7%、氧化镁7%、氧化铁12%、氧化锌2%、氧化钾5%、氧化钠1%组成。各组分熔化后析晶,研磨,制成面层涂料,加入适量调墨油制成浆料,采用丝网印刷工艺将该面层层涂料涂覆于所述发热层。要求研磨后的颗粒度200至280目,印刷厚度1.5mm至3mm。

120℃烘干,经900℃再烧结,制成陶瓷器皿。

实施例二

陶瓷基体由氧化铝32%、氧化锂4.5%、氧化硅33.7428%、氧化钙8.652%、氧化锌1%、氧化镁7.21%、氧化钡5%、碳酸锂0.1%、分散剂0.5%、增塑剂1%,余量的氧化硼、氧化钾和氧化钠组成。本实施例中,氧化镁为最佳含量。少量的氧化镁位于氧化钙和氧化硅的晶体中,可以提高热膨胀系数,并增强抗热震性。

实施例三

陶瓷基体由氧化铝30%、氧化锂4%、氧化硅37.44%、氧化钙9.6%、氧化锌1%、氧化镁8%、氧化钡3%、分散剂0.5%、增塑剂1%,余量的氧化硼、氧化钾和氧化钠组成。本实施例中,碳酸锂的含量为零,锂可以起到强助熔,同时降低烧结温度,但是锂的存在对成本是不利的。

实施例四

陶瓷基体由氧化铝32%、氧化锂4.5%、氧化硅37.44%、氧化钙9.6%、氧化锌1%、氧化镁8%、氧化钡3%、分散剂0.5%、增塑剂1%、碳酸锂2%,余量的氧化硼、氧化钾和氧化钠组成。氧化硼、氧化钾以及氧化钠为助熔成分,但是会快速降低热膨胀系数。

实施例五

所述基层由氧化铝18%、氧化硅30.8%、氧化钙8%、氧化镁7.2%、氧化钡4%、氧化铁14%、氧化硼12%、氧化钾2%、氧化钠4%组成。氧化铝过多,强度大但是涂层易脱落。氧化硅、氧化钙以及氧化镁可以共融,快速析晶。过渡金属氧化物与铁镍银等金属的结合是稳定的。少量氧化钡可以防止快速热交换后爆裂。助熔成分以氧化硼为主。

实施例六

所述发热层由氧化铝12%、氧化镁8%、铁镍合金(Ni3Fe)12%、铁13%、银46%、氧化硼6%、氧化钾2%、氧化钠1%组成。铁镍的作用主要是导磁导电,银可以降低电阻,同时防止高温氧化。

实施例七

所述面层由氧化铝26%、氧化硅32%、氧化钙8%、氧化镁7%、氧化铁13%、氧化锌8%、氧化钾2%、氧化钠4%组成。少量的氧化镁在氧化钙和氧化硅中可以增加耐磨性,氧化铁有助于面层与发热层的连接并保持热稳定。助熔成分以钾钠为主。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号