首页> 中国专利> 低成本模数转换器以及模数转换方法

低成本模数转换器以及模数转换方法

摘要

本发明是关于一种低成本模数转换器以及模数转换方法。此模数转换方法包括下列步骤:根据一数字值输出一脉冲调制信号;将脉冲调制信号进行一低通滤波处理,以得到一脉冲平均电压;利用一第一比例的脉冲平均电压加上一第二比例的一待测电压,混合成一合成电压;将合成电压与一门槛电压进行比较,并调整上述数字值使合成电压接近该门槛电压;以及对上述数字值进行一补数运算以得到待测电压所对应的一模数转换值。

著录项

  • 公开/公告号CN101662284A

    专利类型发明专利

  • 公开/公告日2010-03-03

    原文格式PDF

  • 申请/专利权人 凌通科技股份有限公司;

    申请/专利号CN200810212505.9

  • 发明设计人 廖栋才;罗立声;

    申请日2008-08-29

  • 分类号H03M1/12(20060101);H03H7/06(20060101);

  • 代理机构11127 北京三友知识产权代理有限公司;

  • 代理人任默闻

  • 地址 台湾省新竹科学工业园区

  • 入库时间 2023-12-17 23:40:01

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-08-16

    未缴年费专利权终止 IPC(主分类):H03M1/12 授权公告日:20111026 终止日期:20180829 申请日:20080829

    专利权的终止

  • 2011-10-26

    授权

    授权

  • 2010-04-28

    实质审查的生效 IPC(主分类):H03M1/12 申请日:20080829

    实质审查的生效

  • 2010-03-03

    公开

    公开

说明书

技术领域

本发明是有关于一种数字模拟转换的技术,且特别是有关于一种低成本模数转换器以及模数转换方法。

背景技术

随着科技的进步,电子技术已经由最早的真空管、晶体管,进展到集成电路芯片。其用途十分的广泛,也因此,电子产品也渐渐的成为现代人生活中不可或缺的生活必需品。许多的物品已经渐渐的被电子化,例如电子琴、电动牙刷等等。电子化的目的,无非是希望能够让人们使用上方便。因此许多的控制方法也被一一的进行研究。其中,在许多控制系统中,常常需要使用到模数转换器,例如声音的处理、温度的测量、甚至于视频的处理等等。

图1是已知的模数转换器的电路图。请参考图1,此模数转换器为一般解析度3位的数字转换器。此模数转换器包括8个比较器101~108、9个电阻R101~R109、一解码电路109以及一电压随耦器110。电压随耦器109的输出电压与输入电压VIN相同,其主要是用以作阻抗匹配。9个电阻R101~R109被串联在一起,此9个电阻R101~R109分别被耦接在比较器101~108的负端。电阻R101~R109将电源电压VDD分割成8组电压,因此,比较器101的负端所接收的电压为1/9倍的VDD,比较器102的负端所接收的电压为2/9倍的VDD....,比较器108的负端所接收的电压为8/9倍的VDD。

举例来说,当输入电压V1N大于5/9倍的VDD时,比较器101~105所输出的比较信号C01~C05皆为正饱和电压,比较器106~108所输出的比较信号C06~C08则为负饱和电压。因此,解码电路109所输出的数字值D01、D02、D03分别是1、0、1。

由上述模数转换电路可以看出,仅仅是3位的模数转换器便需要至少9个电阻R101~R109、9个放大器101~108、110以及一解码电路109。若为一般的8位模数转换器,可想而知,此模数转换器至少需要257个电阻、256个放大器以及256对8的解码电路。因此,对于系统设计厂商来说或者集成电路设计厂商来说,无疑是一个非常大的成本问题。

发明内容

有鉴于此,本发明的一目的就是在提供一种模数转换器,此模数转换器可用廉价的电子元件实施,故本发明可以达到利用低成本的方式即达成模数转换的功效。

本发明的另一目的就是在提供一种模数转换方法,只需应用较少的外部元件即可以用来测量外部慢速改变的模拟信号,其主要的应用可以用在温度测量、声波的封包/音量大小(ENVELOPE)检测等等。

为达上述或其他目的,本发明提出一种低成本模数转换器,此模数转换器包括一微处理器、一低通滤波器以及一模拟加法器。微处理器包括一第一输出接脚、一第二输出接脚以及一输入接脚。此微处理器的第一输出接脚用以根据一第一数字值输出一脉冲调制信号。另外,微处理器的输入接脚具有一逻辑门槛电压。低通滤波器耦接微处理器的第一输出接脚,用以对脉冲调制信号进行一低通滤波处理,以输出一脉冲平均电压。模拟加法器包括一第一输入端、一第二输入端以及一输出端。模拟加法器的第一输入端接收脉冲平均电压,其第二输入端接收一待测电压,其输出端输出一合成电压,其中合成电压具有一第一比例的脉冲平均电压加上一第二比例的待测电压。微处理器的输入接脚接收上述合成电压,并通过调整第一数字值使合成电压接近上述逻辑门槛电压,之后,根据将该第一数字值进行一补数运算以得到该待测电压所对应的一模数转换值。

依照本发明的较佳实施例所述的低成本模数转换器,上述低通滤波器包括第一电阻以及第一电容。第一电阻包括一第一端以及一第二端,其第一端耦接微处理器的第一输出接脚。第一电容包括一第一端以及一第二端,其第一端耦接第一电阻的第二端,其第二端耦接一共接电压。另外,上述模拟加法器包括第二电阻以及第三电阻。第二电阻包括一第一端以及一第二端,其第一端耦接第一电阻的第二端,其第二端耦接微处理器的输入接脚。第三电阻包括一第一端以及一第二端,其第一端耦接第二电阻的第二端,其第二端接收待测电压。

依照本发明的另一较佳实施例所述的低成本模数转换器,上述模拟加法器包括第一电阻以及第二电阻。第一电阻包括一第一端以及一第二端,其第一端耦接微处理器的第一输出接脚,其第二端耦接微处理器的输入接脚。第二电阻包括一第一端以及一第二端,其第一端耦接第一电阻的第二端,其第二端接收待测电压。另外,上述低通滤波器包括一电容,此电容的第一端耦接第一电阻的第二端,其第二端耦接一共接电压。另外,在上述几个实施例中,脉冲平均电压为一脉冲宽度调制信号或脉冲密度调制信号。

本发明另外提出一种模数转换方法,此模数转换方法包括下列步骤:根据一数字值输出一脉冲调制信号;将脉冲调制信号进行一低通滤波处理,以得到一脉冲平均电压;利用一第一比例的脉冲平均电压加上一第二比例的一待测电压,混合成一合成电压;将合成电压与一门槛电压进行比较,并调整上述数字值使合成电压接近该门槛电压;以及对上述数字值进行一补数运算以得到待测电压所对应的一模数转换值。

本发明又提出一种模数转换方法,此方法包括:将一第一数字值进行补数运算以得到一第二数字值;根据该第二数字值输出一脉冲调制信号;将脉冲调制信号进行一低通滤波处理,以得到一脉冲平均电压;利用一第一比例的脉冲平均电压加上一第二比例的一待测电压,混合成一合成电压;将合成电压与一门槛电压进行比较,并调整第一数字值使合成电压接近门槛电压;以及对将该第一二数字值进行数值稳定化运算以得到作为该待测电压所对应的一模数转换值。

本发明的精神是在于利用一微处理器调整其内部的数字值,改变其输出的脉冲调制信号,并通过低通滤波的方式将数字值反应成模拟信号,之后,通过模拟加法电路将所欲转换成数字信号的模拟待测电压与该数字值对应的模拟信号进行混波得到一合成电压,最后再通过微处理器的输入接脚原本内建的门槛电压作为基准,调整微处理器内部的数字值,使上述合成电压接近上述门槛电压。因此,此时得到的内部的数字值即可反应当时的模拟待测电压。最后,只要将内部的数字值进行特殊的补数运算即可以得到待测电压对应的数字值。

附图说明

图1是已知的模数转换器的电路图。

图2是根据本发明实施例所绘示的低成本模数转换器的系统方框图。

图3是根据本发明图2的实施例所绘示的低成本模数转换器的详细电路图。

图4是根据本发明实施例所绘示的微处理器的输入接脚内部详细电路图。

图5是根据本发明图2的实施例所绘示的低成本模数转换器的另一详细电路图。

图6是根据本发明实施例所绘示的模数转换方法的流程图。

图7是根据本发明实施例所绘示的模数转换方法的流程图。

附图标号:

101~108:比较器

R101~R109、R201~R203、R501、R502:电阻

109:解码电路

110:电压随耦器

VIN:输入电压/待测电压

VDD:电源电压

C01~C08:比较器101~105所输出的比较信号

D01、D02、D03:解码电路109所输出的数字值

M201:微处理器

L202:低通滤波器

A203:模拟加法器

PM:脉冲调制信号

VDAC:脉冲平均电压

VIN:待测电压

VDET:合成电压

C201、C501:电容

PM:脉冲调制信号

VDAC:脉冲平均电压

VDET:合成电压

PAD:焊垫

BUF:输入缓冲器

VTH:门槛电压

DOUT:待测电压VIN所对应的数字值

S601~S607、S701~S707:本发明实施例的步骤

具体实施方式

为让本发明的上述和其他目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附图式,作详细说明如下。

图2是根据本发明实施例所绘示的低成本模数转换器的系统方框图。请参考图2,此模数转换器包括一微处理器M201、一低通滤波器L202以及一模拟加法器A203。微处理器M201用以根据其内部的一数字值输出一脉冲调制信号PM。低通滤波器L202用以对脉冲调制信号PM进行一低通滤波处理,以输出一脉冲平均电压VDAC。模拟加法器A203接收脉冲平均电压VDAC以及一待测电压VIN,将此两电压混合成一合成电压VDET,此合成电压VDET具有一第一比例的脉冲平均电压VDAC以及一第二比例的待测电压VIN,并将此合成电压VDET反馈给微处理器M201。为了更清楚的说明本发明的精神,以下以更加详细的电路以使所属技术领域具有通常知识者能够了解本发明。

图3是根据本发明图2的实施例所绘示的低成本模数转换器的详细电路图。请参考图3,在此实施例中,低通滤波器L202以电阻R201与电容C201实施;模拟加法器A203以电阻R202与R203实施。接下来,假设脉冲调制信号PM是一个脉冲密度调制信号(Pulse Density Modulation,PDM),其特征在于其单位时间内所输出的脉冲数目会随着微处理器M201的内部的数字值的大小而改变,也就是说,当上述数字值越大时,单位时间内的脉冲密度越高。也因此,此种脉冲密度调制信号PM只需要通过电阻R201与电容C201所构成的低通滤波器L202,即可以将数字值转换为模拟电压,也就是上述的脉冲平均电压VDAC。

接下来,由于模拟加法器A203以电阻R202与R203实施,为了使低通滤波器L202不受到负载效应的影响,电阻R202与R203可以设计成较大的电阻。若以低通滤波器L202不受到负载效应的影响的假设下,合成电压VDET的数学表示式便可以表示如下式:

>VDET=VDAC×R203+VIN×R202R202+R203...EQ1>

上述的合成电压VDET将会被反馈到微处理器M201器的某一个输入脚位。图4是根据本发明实施例所绘示的微处理器的输入接脚内部详细电路图。一般来说,微处理器M201的输入接脚的电路如图4。其包含一焊垫PAD以及一输入缓冲器BUF。输入缓冲器BUF具有一个门槛电压(Threshold Voltage,以下用VTH表示),一般来说,由输入接脚进入焊垫PAD后的输入电压必须要大于此门槛电压VTH,微处理器的内部电路才会判定输入电压为逻辑1。故,当合成电压VDET大于门槛电压VTH,则微处理器M201会接收到“逻辑1”,当合成电压VDET小于门槛电压VTH,则微处理器M201会接收到“逻辑0”。当微处理器M201的输入接脚持续感测到“逻辑1”→“逻辑0”→“逻辑1”...的反复变动时,则表示合成电压VDET已经相当接近门槛电压VTH。因此,上述数学式EQ1可以改写如下:

>VTH+VNOISE=VDAC×R203+VIN×R202R202+R203...EQ2>

其中,VNOISE表示一个微小的噪声电压。接下来,根据上述数学式EQ2,可以得到脉冲平均电压VDAC的表示式如下:

>VDAC=(VTH+VNOISE)×(R203+R202)-R202×VINR203>

>=(VTH+VNOISE)×(1+R202R203)-(R202R203)×VIN>

>=(VTHN)×(1+R202R203)-(R202R203)×VIN...EQ3>

其中VTHN表示门槛电压VTH加上微小的噪声电压VNOISE。

若忽略微小的噪声电压,并假设上述的门槛电压VTH为0.5×VDD,其中VDD表电源电压,另外,假设电阻R202等于R203。则上述数学式EQ3可以改写如下:

VDAC=VDD-VIN............EQ4

由上述的推论,所属技术领域具有通常知识者应当可以了解,若以8位的解析度来说,电源电压VDD即表示255,若脉冲平均电压VDAC所对应的数字值为80,则待测电压VIN所对应的数字值DOUT通过EQ4,可以表示为255-80=175。换句话说,根据本发明上述实施例的方法,所属技术领域具有通常知识者可以设计微处理器M201,使微处理器M201利用上述补数关系得到待测电压VIN所对应的数字值DOUT。

然而,上述的门槛电压VTH,一般来说,都不是0.5倍的电源电压VDD,亦有可能是0.35倍的电源电压VDD。而上述数学式EQ4则可以改写如下:

VDAC=0.7×VDD-VIN............EQ5

同样的道理,上述数学式的差异点仅在于倍率的不同,也就是补数运算的不同。举例来说,若脉冲平均电压VDAC所对应的数字值同为80,则待测电压VIN所对应的数字值DOUT通过EQ5可以表示为0.7×255-80=98。其差异仅在于补数的运算不同,并不影响本发明实施例的运作。故本发明并不以上述数学式为限。

另外,虽然上述实施例是以脉冲密度调制信号PDM作举例,然所属技术领域具有通常知识者应当知道,脉冲宽度调制信号(Pulse Width Modulation,PWM)亦可以作为本发明的实施例所应用的信号。此两信号的差异是在于,脉冲宽度调制信号PWM在单位时间内所输出的脉冲宽度会随着微处理器M201的内部的数字值的大小而改变,换句话说,当数字值越大时,单位时间内的脉冲宽度越大。然而,脉冲宽度调制信号PWM在低通滤波器的设计上,则需要采用较大的时间常数设计,也就是较大的电容。否则脉冲宽度调制信号PWM将会产生较大的涟波。而脉冲密度调制信号PDM由于脉冲对时间的分布较平均,因此,在低通滤波器的设计上,则可以采用较小的时间常数设计。

承上述,图5是根据本发明图2的实施例所绘示的低成本模数转换器的另一详细电路图。请参考图5,在此可以看出,模拟加法器A203是以电阻R501以及R502实施,而低通滤波器L202则是以电容C501共用电阻R501实施。一般来说,为了减少负载效应,电阻R501以及R502的设计会选择电阻值较大的电阻。也因此,电容C501的设计可以选择电容值较小的电容。此种实施方式,其原理与上述图3的实施例相同,因此,在此不予赘述。由于电容C501的设计选用较小的电容,此种实施方式在脉冲调制信号PM的选择上,较佳的选择是使用脉冲密度调制信号PDM。

由上述实施例,本发明可以归纳成一个模数转换方法,图6是根据本发明实施例所绘示的模数转换方法的流程图。请参考图6,此模数转换方法包括下列步骤:

步骤S601:开始。

步骤S602:根据一数字值输出一脉冲调制信号。在上述实施例中,微处理器M201根据其内部的数字值,输出一个脉冲密度调制信号PDM或脉冲宽度调制信号PWM。

步骤S603:将脉冲调制信号进行一低通滤波处理,以得到一脉冲平均电压。请参照上述实施例,所输出的脉冲调制信号PM通过低通滤波处理,便会得到微处理器M201内部的数字值所对应的脉冲平均电压VDAC。

步骤S604:利用一第一比例的脉冲平均电压加上一第二比例的一待测电压,混合成一合成电压。请参照上述实施例,上述脉冲平均电压VDAC与待测电压VIN通过两电阻R202与R203混合成合成电压VDET。

步骤S605:将合成电压与一门槛电压进行比较,并调整第一数字值使该合成电压接近门槛电压。同样的,通过调整微处理器M201内部的数字值,以调整VDET使其接近微处理器M201的输入接脚的逻辑门槛电压。

步骤S606:对上述数字值进行一补数运算以及数值稳定化处理以得到待测电压所对应的一模数转换值。请参照上述数学式EQ1~EQ5的证明。另外,由于上述合成电压VDET会在门槛电压VTH附近上下变动,也就是说,上述数字值会跟随着时间变动。因此,数值稳定化处理可以稳定上述数字值随着时间变动的情形。

步骤S607:结束。

图7是根据本发明实施例所绘示的模数转换方法的流程图。请参考图6以及图7,上述图6的实施例仍可以改为如图7的变化型,此模数转换方法包括下列步骤:

步骤S701:开始。

步骤S702:根据一数字值的补数输出一脉冲调制信号。

步骤S703:将脉冲调制信号进行一低通滤波处理,以得到一脉冲平均电压。

步骤S704:利用一第一比例的脉冲平均电压加上一第二比例的一待测电压,混合成一合成电压。

步骤S705:将合成电压与一门槛电压进行比较,并调整第一数字值使该合成电压接近门槛电压。

步骤S706:对第一数字值进行数值稳定化运算以得到待测电压所对应的一模数转换值。

步骤S707:结束。

比较图6的实施例与图7的实施例,可以看出,此实施例主要是根据“数字值的补数”输出一脉冲调制信号。因此在最后,便不需要进行补数运算,直接可以利用上述数字值代表待测电压。

同样的道理,上述图2、图3以及图5的电路中,同样的,也可以对数字值先进行补数运算,其中,补数的数值在上述实施例中已经被证明,故在此不予赘述。如此实施法主要的好处在于无需后续进行运算,直接可以利用微处理器所输出的数字值即可代表待测电压所对应的一模数转换值。而补数的作法可以利用查找表的方式或其他软件程序码的方式。一般来说,比较好的实施方式是利用查找表的方式,利用查找表的方式除了可以提升本发明实施例的模数转换器或本发明实施例的模数转换方法的速度外,还可以使得上述模数转换值更加精确。

综上所述,本发明的精神是在于利用一微处理器调整其内部的数字值,改变其输出的脉冲调制信号,并通过低通滤波的方式将数字值反应成模拟信号,之后,通过模拟加法电路将所欲转换成数字信号的模拟待测电压与该数字值对应的模拟信号进行混波得到一合成电压,最后再通过微处理器的输入接脚原本内建的门槛电压作为基准,调整微处理器内部的数字值,使上述合成电压接近上述门槛电压。因此,此时得到的内部的数字值即可反应当时的模拟待测电压。最后,只要将内部的数字值进行特殊的补数运算即可以得到待测电压对应的数字值。

由于上述模拟加法电路、低通滤波器等等元件皆容易使用廉价的无源元件实施,故本发明可以达到利用低成本的方式即达成模数转换的功效。

在较佳实施例的详细说明中所提出的具体实施例仅用以方便说明本发明的技术内容,而非将本发明狭义地限制于上述实施例,在不超出本发明的精神及权利要求保护范围的情况,所做的种种变化实施,皆属于本发明的范围。因此本发明的保护范围当视所附的权利要求书所界定为准。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号