首页> 中国专利> 一种基于同心椭圆弦长比的单晶硅直径检测方法及装置

一种基于同心椭圆弦长比的单晶硅直径检测方法及装置

摘要

本发明公开了一种基于同心椭圆弦长比的单晶硅直径检测方法及装置,步骤S1:拍摄单晶硅生长过程;步骤S2:椭圆拟合,获取椭圆参数;步骤S3:联立椭圆方程和直线方程;步骤S4:对释能环区域设置ROI(感兴趣区域);步骤S5:采用边缘检测算法计算得到释能环区域的部分椭圆边缘;步骤S6:使用遍历法查询并记录距离长度;步骤S7:根据同心椭圆弦长比的几何性质,计算并记录每一组对应的单晶硅直径;步骤S8:对于计算得到的单晶硅直径进行中值滤波,得出当前帧对应的单晶硅直径;步骤S9:跳转步骤S5,开启下一帧直至等径工艺后结束。本发明在直径检测时不需要拟合释能环形成的椭圆边缘或圆边缘,极大地减少计算量,提高单晶硅直径的检测精度和检测效率。

著录项

  • 公开/公告号CN114926440A

    专利类型发明专利

  • 公开/公告日2022-08-19

    原文格式PDF

  • 申请/专利权人 之江实验室;

    申请/专利号CN202210577992.9

  • 申请日2022-05-26

  • 分类号G06T7/00(2017.01);G06T7/13(2017.01);G06T7/62(2017.01);G06T5/00(2006.01);G06V10/25(2022.01);

  • 代理机构北京志霖恒远知识产权代理事务所(普通合伙) 11435;

  • 代理人戴莉

  • 地址 311121 浙江省杭州市余杭区之江实验室南湖总部

  • 入库时间 2023-06-19 16:26:56

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-09-06

    实质审查的生效 IPC(主分类):G06T 7/00 专利申请号:2022105779929 申请日:20220526

    实质审查的生效

说明书

技术领域

本发明涉及一种直拉式单晶硅直径检测技术领域,尤其涉及一种基于同心椭圆弦长比的单晶硅直径检测方法及装置。

背景技术

信息和能源是21世纪的两大支柱产业。作为一种良好的半导体材料,单晶硅通常用于制作集成电路和太阳能电池,是信息产业和新能源产业最基础的原材料,在军事电子设备中也发挥着重要的作用。直拉法是生产单晶硅的主要方法,世界上70%-80%的单晶硅产量是用直拉法生产的。使用直拉法生产单晶硅时,直径检测是重要的工艺环节,是保证晶体等径生长的关键。控制系统通过实时测量单晶硅棒的直径,调整加热功率和晶体拉速,使晶棒直径始终处于合理范围,最终可以生产出表面光滑的高品质单晶硅棒。

硅的熔点约为1450℃,单晶硅的生产过程始终在高温负压的单晶炉内进行,因此直径检测通常采用非接触式检测手段,常用的检测方法有三类。第一类是测径仪法,测径仪是一种机械式位移测量系统,由光学镜头、测量读数机构和仪器座三部分组成。使用时,先将测径仪安装在单晶炉观察窗口上,操作人员调整光学镜头,通过目视寻找圆柱晶棒的左右边缘。找到并瞄准一条边缘后,移动镜头寻找另一条边缘,镜头移动的距离读数就是单晶硅的直径。这种人工测量方法比较准确,但无法实时、持续、自动测量。

第二类是重量计算法,在拉升晶棒的钢丝绳上安装一个重量传感器,通过计算单位长度内晶棒增加的重量来计算该长度内晶棒的平均直径。这种方法不是一种实时的检测方法,得到的结果是单晶硅棒一定长度内的平均直径。

第三类是机器视觉法,也是目前测量单晶硅直径的主流技术。单晶硅生长过程中,晶体从液态转化为固态时会释放大量能量,从而在晶棒和熔硅液面的交界处形成一个明亮的圆环,又称释能环。释能环的直径代表了晶棒的直径,所有的视觉方法都是围绕测量释能环直径进行展开。大多数单晶硅直径检测系统都使用CCD或CMOS相机进行检测,相机一般安装在拉晶炉的观察窗口上,倾斜向下拍摄释能环,通过计算释能环直径,得到单晶硅棒的直径。由于相机是从斜上方向下拍摄,原本呈圆形的释能环会因为拍摄角度变形为椭圆。不同检测方法之间的差异主要体现在释能环尺寸检测环节,如公号CN 104990510 A的中国发明专利直接将椭圆形的释能环边缘视为圆边缘,通过选取圆弧边缘上三个点计算圆心,进而计算晶棒直径。这个方法检测速度快,但是检测精度不足。公号CN 103046128 A的中国发明专利先用最小二乘法拟合释能环的椭圆边缘,然后根据相机与垂直方向的夹角,将椭圆仿射成圆边缘,通过圆弧上三点坐标计算圆心和直径。这个方法计算量大,且在仿射变换中会引入和放大误差,精度也不高。公号CN 102914270 A的中国发明专利提出了一种支持向量机回归的晶棒直径测量方法,它针对椭圆的标准方程推导出一个SVR模型,通过求取SVR模型中的权值和偏移量b来计算椭圆拟合的参数,进一步计算晶棒直径。这个方法检测精度较高,但是计算量大,因为确定一个椭圆需要5个参数,因此实际应用时实时性较差。

为此,本发明提出一种基于同心椭圆弦长比的单晶硅直径检测方法及装置以此解决上述技术问题。

发明内容

本发明的目的在于提供一种基于同心椭圆弦长比的单晶硅直径检测方法及装置,解决了现有技术中直径检测技术精度一般、计算量大、实时性差的问题。

本发明采用的技术方案如下:

一种基于同心椭圆弦长比的单晶硅直径检测方法,包括以下步骤:

步骤S1:将工业相机安装在拉晶炉观察窗口上,透过隔热玻璃拍摄单晶硅生长过程;

步骤S2:在融料阶段,对导流筒倒影产生的残缺椭圆进行椭圆拟合,获取椭圆参数,并形成完整的椭圆;

步骤S3:预先设置N组经过所述椭圆的圆心O的直线L

步骤S4:进入转肩阶段前,对释能环区域设置感兴趣区域,所述感兴趣区域完全覆盖整个拉晶过程中的释能环区域;

步骤S5:在转肩、等径阶段,采用边缘检测算法对当前帧释能环区域的释能环图像计算,得到释能环区域的部分释能环椭圆边缘;

步骤S6:使用遍历法查询线段OQ

步骤S7:根据同心椭圆弦长比的几何性质,结合导流筒直径,计算并记录每一组(OP

步骤S8:对计算得到的N组单晶硅直径D

步骤S9:跳转步骤S5,开启下一帧单晶硅直径计算,直至单晶硅完成等径工艺后结束。

进一步地,所述步骤S2中椭圆拟合的算法为基于霍夫的椭圆拟合算法、最小二乘椭圆拟合算法或基于平行弦的椭圆拟合算法。

进一步地,所述步骤S5中所述边缘检测算法为Sobel算法、Roberts算法、双边滤波算法或Canny边缘检测算法。

进一步地,步骤S2中所述的导流筒倒影、步骤S5中所述的释能环在图像中形成一对同心椭圆。

进一步地,所述步骤S7中所述的同心椭圆弦长比的几何性质,指的是单晶硅直径=导流筒底部直径×(OP

本发明还提供一种基于同心椭圆弦长比的直拉式单晶硅直径检测装置,包括隔热玻璃、工业镜头、工业相机、存储器和一个或多个处理器,所述存储器中存储有可执行代码,所述一个或多个处理器执行所述可执行代码时,用于实现上述实施例任一项所述的一种基于同心椭圆弦长比的单晶硅直径检测方法。

本发明还提供一种计算机可读存储介质,其上存储有程序,该程序被处理器执行时,实现上述实施例任一项所述的一种基于同心椭圆弦长比的单晶硅直径检测方法。

本发明的有益效果是:

1、与现有技术比,本发明提供的一种基于同心椭圆弦长比的单晶硅直径检测方法,充分利用了导流筒和单晶硅棒在垂直方向同轴的空间关系,深入分析得出导流筒倒影和释能环在相机成像中呈现同心椭圆,进一步探索同心椭圆中心线弦长比例关系,推导得出单晶硅直径与导流筒底部直径的线性映射规律,进而通过导流筒底部直径和同心椭圆弦长比计算单晶硅直径。

2、本发明所提供的一种基于同心椭圆弦长比的单晶硅直径检测方法,理论简单,操作便利,在直径检测时不需要拟合释能环形成的椭圆边缘或圆边缘,极大地减少了计算量,提高了单晶硅直径的检测精度和检测效率。

附图说明

图1为本发明一种基于同心椭圆弦长比的单晶硅直径检测方法流程示意图;

图2为本发明实施例提供的直拉式单晶硅生产过程中,拉晶炉内结构、工业相机安装方式、工业相机拍摄的导流筒倒影和释能环的成像示意图;

图3为本发明实施例提供的导流筒倒影和释能环在图像中呈同心椭圆关系的示意图;

图4为本发明实施例提供的同心椭圆弦长比率几何性质的原理示意图;

图5位本发明一种基于同心椭圆弦长比的单晶硅直径检测方法装置示意图。

附图标记说明

1-工业相机,2-拉晶炉,3-观察窗,4-隔热玻璃,5-晶硅棒,6-熔硅液面,7-导流筒,8-导流筒倒影,9-释能环。

具体实施方式

以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

见图1,一种基于同心椭圆弦长比的单晶硅直径检测方法,包括以下步骤:

步骤S1:将工业相机安装在拉晶炉观察窗口上,透过隔热玻璃拍摄单晶硅生长过程;

步骤S2:在融料阶段,对导流筒倒影产生的残缺椭圆进行椭圆拟合,获取椭圆参数,并形成完整的椭圆;椭圆拟合的算法为基于霍夫的椭圆拟合算法、最小二乘椭圆拟合算法或基于平行弦的椭圆拟合算法;

步骤S3:预先设置N组经过所述椭圆的圆心O的直线L

步骤S4:进入转肩阶段前,对释能环区域设置ROI(感兴趣区域),ROI(感兴趣区域)区域能完全覆盖整个拉晶过程中的释能环区域;

步骤S5:在转肩、等径阶段,采用边缘检测算法对当前帧释能环区域的释能环图像计算,得到释能环区域的部分释能环椭圆边缘;所述边缘检测算法为Sobel算法、Roberts算法、双边滤波算法或Canny边缘检测算法;

步骤S6:使用遍历法查询线段OQ

步骤S7:根据同心椭圆弦长比的几何性质,结合导流筒直径,计算并记录每一组(OP

步骤S8:对计算得到的N组单晶硅直径D

步骤S9:跳转步骤S5,开启下一帧单晶硅直径计算,直至单晶硅完成等径工艺后结束。

实施例

如图2所示,本发明将一个工业相机1安装在拉晶炉2的观察窗3上,工业相机1透过隔热玻璃4斜向下拍摄单晶硅棒5的生长过程。高温的熔硅液面6具备较好的平整度和较强的反射性,可以视为镜面。根据镜面成像原理,悬挂在熔硅液面6上的导流筒7会产生一个倒影,导流筒倒影8和释能环9会被工业相机1一同拍摄采集。

如图3所示,本发明对图2中导流筒倒影8和释能环9的空间关系进行仔细分析。由于工业相机1与垂直方向Z轴呈β角度斜向下拍摄,圆柱形单晶硅棒5和圆锥形导流筒7在图像上变为两个椭圆。在直拉式单晶硅装配和生产过程中,导流筒7和单晶硅棒5关于垂直方向严格同轴,因此导流筒倒影8和释能环9构成一对同心椭圆。显然,单晶硅棒5的直径D

其中a

其中a

结合公式(1)和公式(2),容易推导出:

公式(3)表示内椭圆和外椭圆具有相同的同心率,公式(4)表示单晶硅棒5的直径和导流筒7的底部直径之间的比率与它们对应的椭圆投影的长半轴比率(或者短半轴比率)相同。导流筒底部直径可以事先测量作为已知常量,因此只要检测出图像中两个椭圆的长轴比(或短轴比),就能根据公式(4)快速计算晶棒的直径。

椭圆有5个参数(x,y,a,b,θ),分别表示椭圆圆心坐标(x,y)、长半轴a、短半轴b、相对水平方向的旋转角θ。想要计算长半轴a或短半轴b涉及到椭圆的参数辨识,该类问题存在计算量大、实时性低的缺点。为了减少直径检测的计算量,进一步提高检测效率,本发明对同心椭圆的几何性质进行了深入挖掘。

如图4所示是一对未经旋转、圆心在原点,具有典型代表意义的同心椭圆。椭圆A的五个参数分别是(0,0, a

中心线l

由公式(5)和(6)易得交点P

如公式(3)所示,同心椭圆拥有相同的同心率,那么OP

结合公式(4)和(8)可得:

公式(9)意味着,已知导流筒底部直径D

参见图5,与前述一种基于同心椭圆弦长比的单晶硅直径检测方法的实施例相对应,本发明还提供了一种基于同心椭圆弦长比的单晶硅直径检测装置的实施例。

本发明实施例提供的一种基于同心椭圆弦长比的单晶硅直径检测装置,包括存储器和一个或多个处理器,所述存储器中存储有可执行代码,所述一个或多个处理器执行所述可执行代码时,用于实现上述实施例中的一种基于同心椭圆弦长比的单晶硅直径检测方法。

本发明一种基于同心椭圆弦长比的单晶硅直径检测装置的实施例可以应用在任意具备数据处理能力的设备上,该任意具备数据处理能力的设备可以为诸如计算机等设备或装置。装置实施例可以通过软件实现,也可以通过硬件或者软硬件结合的方式实现。以软件实现为例,作为一个逻辑意义上的装置,是通过其所在任意具备数据处理能力的设备的处理器将非易失性存储器中对应的计算机程序指令读取到内存中运行形成的。从硬件层面而言,如图5所示,为本发明一种物联网设备协同联动装置所在任意具备数据处理能力的设备的一种硬件结构图,除了图5所示的处理器、内存、网络接口、以及非易失性存储器之外,实施例中装置所在的任意具备数据处理能力的设备通常根据该任意具备数据处理能力的设备的实际功能,还可以包括其他硬件,对此不再赘述。

上述装置中各个单元的功能和作用的实现过程具体详见上述方法中对应步骤的实现过程,在此不再赘述。

对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本发明方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。

本发明实施例还提供一种计算机可读存储介质,其上存储有程序,该程序被处理器执行时,实现上述实施例中的一种基于同心椭圆弦长比的单晶硅直径检测方法。

所述计算机可读存储介质可以是前述任一实施例所述的任意具备数据处理能力的设备的内部存储单元,例如硬盘或内存。所述计算机可读存储介质也可以是任意具备数据处理能力的设备的外部存储设备,例如所述设备上配备的插接式硬盘、智能存储卡(Smart Media Card,SMC)、SD卡、闪存卡(Flash Card)等。进一步的,所述计算机可读存储介质还可以既包括任意具备数据处理能力的设备的内部存储单元也包括外部存储设备。所述计算机可读存储介质用于存储所述计算机程序以及所述任意具备数据处理能力的设备所需的其他程序和数据,还可以用于暂时地存储已经输出或者将要输出的数据。

以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号