首页> 中国专利> 一种基于集总参数和有限差分的离合器摩擦转矩预测方法

一种基于集总参数和有限差分的离合器摩擦转矩预测方法

摘要

本发明公开了一种基于集总参数和有限差分的离合器摩擦转矩预测方法,包括以下步骤:S1,有限差分法仿真计算出摩擦副盘面的实时平均温度;S2,再将摩擦副盘面的实时平均温度代替摩擦副的平均温度代入到集总参数法中计算油液的实时平均温度,用于提升温升计算模型的准确性;S3,温升计算模型和摩擦转矩预测模型相互耦合计算实时粘性转矩及粗糙转矩,粘性转矩与粗糙转矩之和即为摩擦转矩。本发明通过Matlab编程,用有限差分法计算盘面的实时平均温度,再用盘面实时平均温度代替元件平均温度,并代入到集总参数法中计算油液的实时平均温度,提升了温升计算模型的准确性,同时,该方法对于不同摩擦元件材料和离合器工况条件均可进行设定,具有较高的适用性。

著录项

  • 公开/公告号CN114936496A

    专利类型发明专利

  • 公开/公告日2022-08-23

    原文格式PDF

  • 申请/专利权人 中国矿业大学(北京);

    申请/专利号CN202210564535.6

  • 申请日2022-05-23

  • 分类号G06F30/23(2020.01);G06F30/15(2020.01);G06F30/17(2020.01);G06F17/13(2006.01);G06F119/08(2020.01);G06F119/14(2020.01);

  • 代理机构北京中睿智恒知识产权代理事务所(普通合伙) 16025;

  • 代理人侯文峰

  • 地址 100000 北京市海淀区学院路丁11号

  • 入库时间 2023-06-19 16:28:30

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2023-04-25

    授权

    发明专利权授予

  • 2022-09-09

    实质审查的生效 IPC(主分类):G06F30/23 专利申请号:2022105645356 申请日:20220523

    实质审查的生效

说明书

技术领域

本发明涉及离合器摩擦转矩预测技术领域,尤其涉及一种基于集总参数和有限差分的离合器摩擦转矩预测方法。

背景技术

研究摩擦转矩的预测方法对研究摩擦副的工作特性具有重要意义。湿式摩擦副处于接合过程中时,由于摩擦片和对偶钢片存在转速差,油液产生的粘性转矩和微凸体接触产生的粗糙转矩会产生大量摩擦热,摩擦热会影响摩擦副的力学性能,一方面,油液温度升高会影响粘性转矩,另一方面,摩擦热通过对摩擦系数的影响,进而会影响粗糙转矩。因此,准确的计算出离合器工作过程中温升的变化,对研究转矩的变化规律有重要的意义。

目前针对湿式摩擦副的摩擦转矩预测主要是通过温升计算模型和摩擦转矩预测模型等的耦合来实现的,通过温升模型计算摩擦元件及润滑油的平均温升,温度变化会影响润滑油的粘温特性,进而影响粘性转矩和粗糙转矩。温升的计算方法主要有有限单元法和集总参数法两种。用有限单元法实时计算元件及润滑油的温升,存在理论过于复杂,油液实时温度难以计算以及编程难以实现的缺点。通过集总参数法构建热阻网络模型时,集总参数法近似认为元件内温度分布与坐标无关,将摩擦副简化为一个节点,忽略了节点内部热阻,用一点的温度代替了元件整体的温度,将接触面与油液之间的换热简化为摩擦副节点与油液换热。但摩擦盘面温度与元件内部温度相差较大,且盘面与润滑油间的热交换发生在二者的接触面上,因此仅用集总参数法计算油液温度会存在较大误差,无法对摩擦转矩进行准确预测。

发明内容

本发明提供了一种基于集总参数和有限差分的离合器摩擦转矩预测方法,以解决上述背景技术中提出的问题。

为了实现上述目的,本发明实施例提供了一种基于集总参数和有限差分的离合器摩擦转矩预测方法,包括以下步骤:

S1,有限差分法仿真计算出摩擦副盘面的实时平均温度;

S2,再将摩擦副盘面的实时平均温度代替元件平均温度代入到集总参数法中计算油液的实时平均温度,用于提升温升计算模型的准确性;

S3,温升计算模型和摩擦转矩预测模型相互耦合计算实时粘性转矩和粗糙转矩,进而得到实时摩擦转矩。

作为上述方案的改进,S1、S2和S3步骤中摩擦转矩预测主要是通过 Matlab软件实现的,通过编程实现温升计算模型和摩擦转矩预测模型的耦合。

作为上述方案的改进,Matlab软件主要通过油膜厚度,摩擦片及对偶钢片的转速差以及油液温度等底层变量来控制温升计算模型和摩擦转矩预测模型里的各参数变化,以实现各模型间的耦合。

作为上述方案的改进,针对集总参数法的不足,本预测方法用实时摩擦副盘面温度代替摩擦副温度计算出油液的实时温升。

作为上述方案的改进,有限差分法用于计算摩擦副盘面的实时平均温度。

作为上述方案的改进,通过得出的油液实时温度计算摩擦副粘性转矩及粗糙转矩,粘性转矩与粗糙转矩之和即为摩擦转矩。

作为上述方案的改进,摩擦转矩可回代到集总参数和有限差分里计算盘面及油液温度,实现多模型耦合。

作为上述方案的改进,油液的实时平均温度计算参数包括盘面实时平均温度、摩擦系数、粗糙接触压力及摩擦副的相对转速值。

本发明实例还提供了一种终端设备,包括处理器、存储器以及存储在所述存储器中且被配置为由所述处理器执行的计算机程序,所述处理器执行所述计算机程序时实现上述任意一项所述的基于集总参数和有限差分的离合器摩擦转矩预测方法。

本发明实例还提供了一种计算机可读存储介质,所述计算机可读存储介质包括存储的计算机程序,其中,在所述计算机程序运行时控制所述计算机可读存储介质所在设备执行上述任意一项所述的基于集总参数和有限差分的离合器摩擦转矩预测方法。

与现有技术相比,本发明的有益效果是:

本发明提供了一种基于有限差分和集总参数的离合器摩擦转矩预测方法,可以准确计算摩擦副盘面温度及油液温升,进而更精确地预测转矩的变化规律。本发明通过Matlab编程,将通过有限差分法得到的盘面实时平均温度代替元件平均温度,代入到集总参数法中计算油液实时平均温度,提升了温升计算模型的准确性,再将其与摩擦转矩预测模型相耦合,获得更为准确的摩擦转矩变化规律,一次循环之后,得到的摩擦转矩可以回代到温升计算模型中计算下一次循环的摩擦盘面及油液温度,以实现多模型的相互耦合。同时,该方法对于不同摩擦元件材料和离合器工况条件均可进行设定,具有较高的适用性。

上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实例并配合附图详细说明如后。本发明的具体实施方式由以下实施例及其附图详细给出。

附图说明

此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:

图1为对偶钢片二维网格模型;

图2为本发明的耦合思路图;

图3为本发明的计算参数随时间迭代的流程图;

图4为本发明预测的最大摩擦转矩图。

具体实施方式

以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。在下列段落中参照附图以举例方式更具体地描述本发明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。

除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。

根据湿式离合器的工作特点,可大致将接合分成两个阶段,第一个阶段是挤压阶段,在这个阶段,离合器开始接合,摩擦副间的润滑油受到挤压,会形成油膜承载力,在此阶段,摩擦片与对偶钢片的间距较大,摩擦副表面微凸体并未接触,摩擦副里仅存在较小的粘性转矩,由此粘性转矩产生的热量很小,可以忽略,近似认为此时的盘面与油液温度为恒温。

第二个阶段是压紧阶段,在这个阶段,湿式离合器摩擦副间的微凸体开始接触,摩擦副间的距离逐渐减小,直到被完全压紧。在此过程中,摩擦副开始产生粗糙转矩,此时的产热量用有限差分法和集总参数法计算,通过将限差分法和集总参数法相结合,可以获得更为准确的油液温度,进而实现对摩擦转矩更为准确的预测。预测摩擦转矩的思路叙述如下。

本发明的耦合思路见图2,说明如下:转矩的预测可以分为两部分:温度计算和转矩预测。这两个部分分别表述温度与力矩两个不同的物理过程,二者之间通过油液温度、摩擦系数、摩擦副相对转速等不同的参数耦合在一起。有限差分法和集总参数法属于温度计算部分,其相互影响,互相耦合计算出一个精确的油液温度值,由得到的油液温度值可以计算出油膜粘度及摩擦系数,进而能够计算出转矩预测部分的粘性转矩及粗糙转矩,粘性转矩与粗糙转矩之和为摩擦转矩,通过摩擦转矩可以计算得到摩擦副的相对转速,而温度计算部分的计算又需要用到油液温度、摩擦系数、粗糙接触压力及摩擦副的相对转速值,而得到这些参数的温度计算部分则将计算出的油液温度输出给转矩预测部分,两部分耦合在一起,实现实时性的综合求解。

本发明随时间迭代的流程图见图3,说明如下:将摩擦副接合的时间按固定时间步长分为n份,以下角标0-n表示不同时刻的参数值,下角标0表示初始条件(已知),下角标n表示最终时刻输出的参数。整个转矩预测模型可以按参数类型分为左右两部分,左半部分是集总参数法+摩擦转矩模型,在时间迭代中输出油液温度T

转矩预测部分的计算公式如下:

摩擦转矩:M

摩擦副相对转速:

式中,p为时间序列,I

粘性转矩:

其中,φ

A

其中,N为微凸峰密度;R

φ

T

粗糙转矩的计算公式如下:

其中,k为摩擦系数,计算公式如下:

其中,p

p

其中,

E'为摩擦副的当量弹性模量,计算公式为:

式中:E

综上,当油液温度被计算出,就能准确预测摩擦转矩。

温度计算部分的计算思路如下:

有限差分法:

通过有限差分法计算对偶钢片的截面温度。摩擦副的热传导模型满足轴对称的几何形状、边界条件、约束。在均匀压力假设下,热流的分布不会沿圆周方向改变。因此,将摩擦副的瞬态热传导问题简化为一个轴对称的二维热传导方程。

其中,R

以1/2对偶钢片模型建立截面温度计算模型。对偶钢片的网格划分与边界条件示意图,如图1所示。M和N分别为径向和轴向最大网格节点序号。

通过有限差分法对式(13)进行离散。对于内部节点,在空间步长上采用中心差分形式,在时间步长上采用向前差分形式,得到显示差分表达式为:

其中,Δx、Δy分别为x轴、y轴方向上的空间步长,Δt为时间步长, m、n分别为在x轴、y轴方向的节点序号,p为时间节点序号。m、n和p均为整数。对于内部节点,m∈[1,M-1],n∈[1,N-1]。对偶钢片在x轴与y 轴方向上取相等的空间步长,即Δx=Δy,基于傅立叶准则进行整理得:

其中,Fo为傅里叶数。

对于式(16),为实现通过钢片某一时间节点p的温度中

对偶钢片的二维模型除中平面外,其它三个平面与周围环境间存在不同形式的热交换。钢片的内外径表面和与油液间存在对流换热现象,上表面存在滑摩产生的热流输入和表面局部油膜导致的散热现象。在对偶钢片温度计算模型中,各边界上除顶点外的节点温度计算公式如下:

其中,Bi为毕渥数;h为对流换热系数;q'

对于内径边界节点的温度计算公式(16),对流换热形式为管槽内层流强制对流换热,对流换热系数h

其中,Nu为努塞尔数;λ

采用齐德—泰特(Sieder-Tate)公式计算管槽内层流强制对流换热的平均努塞尔数Nu:

其中,Re为雷诺数;Pr为普朗特数;l为管槽长度,取内径周长;μ为油液动力粘度;μ

对于上边界节点的温度计算公式(22),热流密度q'的计算公式如下:

其中,q'

q′

q

其中,q

接触面对流换热系数h

其中,r为对偶钢片上的半径;Re

集总参数法:

集总参数法将摩擦副简化为一个节点,忽略了节点内部热阻,仅考虑节点内元件产热及元件与油液换热,由导热微分方程列出热状态方程:

其中,M为摩擦转矩,Δω为摩擦片与对偶钢片的转速差。p为时间节点序号,p为整数。c

将有限差分法得到的盘面温度代入上述集总参数法公式中,用盘面温度替换摩擦副元件温度,计算出更准确的油液平均温度,根据此时刻的油液平均温度能够计算出此时刻的摩擦转矩。

在转速为400r/min,加载压力为0.1MPa时,按照此理论预测的最大摩擦转矩值如图4所示,在转速为400r/min,加载压力为0.2MPa时,按照此理论预测的最大摩擦转矩值与实验测得的最大摩擦转矩值基本吻合。

本发明实施例还提供了一种终端设备,包括处理器、存储器以及存储在所述存储器中且被配置为由所述处理器执行的计算机程序,处理器执行所述计算机程序时实现上述任一项的基于集总参数和有限差分的离合器摩擦转矩预测方法。

本发明实施例还提供了一种计算机可读存储介质,计算机可读存储介质包括存储的计算机程序,其中,在计算机程序运行时控制所述计算机可读存储介质所在设备执行上述任一项的基于集总参数和有限差分的离合器摩擦转矩预测方法。

以上所述,仅为本发明的较佳实施例而已,并非对本发明作任何形式上的限制;凡本行业的普通技术人员均可按说明书附图所示和以上所述而顺畅地实施本发明;但是,凡熟悉本专业的技术人员在不脱离本发明技术方案范围内,利用以上所揭示的技术内容而做出的些许更动、修饰与演变的等同变化,均为本发明的等效实施例;同时,凡依据本发明的实质技术对以上实施例所作的任何等同变化的更动、修饰与演变等,均仍属于本发明的技术方案的保护范围之内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号